Araştırma Makalesi
BibTex RIS Kaynak Göster

High FFA Oils: A Comparative Analysis of Biodiesel Production via Direct Transesterification and Sequential Esterification-Transesterification Processes

Yıl 2024, Cilt: 40 Sayı: 3, 570 - 586, 30.12.2024

Öz

In this study, biodiesel production was carried out using a single-step (transesterification) and a two-step (esterification + transesterification) process with Pistacia terebinthus oil (TO), which has a high free fatty acid (FFA) content. TO, containing 5.8% FFA, was converted into biodiesel using single-step (TOTB100) and two-step (TOETB100) methods, and the effects of FFA content on biodiesel yield were analyzed using analytical characterization techniques. According to the Gas Chromatography-Mass Spectrometry (GC-MS) results, the oleic acid content in the TO sample was determined to be 48.4%, while the total Fatty Acid Methyl Ester (FAME) content in TOETB100 biodiesel was calculated as 95.7%. Fourier Transform Infrared Spectroscopy (FT-IR) analysis revealed a characteristic peak at 1438.1 cm⁻¹, indicating FAME formation in the TOETB100 biodiesel. Proton Nuclear Magnetic Resonance (¹H NMR) and Carbon Nuclear Magnetic Resonance (¹³C NMR) analyses showed that the conversion efficiency of TOTB100 biodiesel was lower (60.74%) compared to that of TOETB100 biodiesel (78.01%). As a result, it was determined that the two-step method provides higher conversion efficiency and FAME content compared to the single-step method in biodiesel production from oils with high FFA content. These findings suggest that the two-step chemical process is a more suitable method for biodiesel production from oils with high FFA content.

Kaynakça

  • [1] Townsend CC, Davis PH. Flora of Turkey and the East Aegean Islands. Kew Bulletin 1973;28:328. https://doi.org/10.2307/4119794.
  • [2] Gercheva P, Zhivondov A, Nacheva L, Avanzato D. Transsexual forms of pistachio (pistacia terebinthus l.) from bulgaria - Biotechnological approaches for preservation, multiplication and inclusion in selection programs. Bulgarian Journal of Agricultural Science 2008;14:449–53.
  • [3] Özgür T, Özcanli M, Aydin K. Investigation of nanoparticle additives to biodiesel for improvement of the performance and exhaust emissions in a compression ignition engine. International Journal of Green Energy 2015;12:51–6. https://doi.org/10.1080/15435075.2014.889011.
  • [4] Dorado MP, Ballesteros E, De Almeida JA, Schellert C, Löhrlein HP, Krause R. An alkalai-catalyzed transesterification process for high free fatty acid waste oils. Transactions of the American Society of Agricultural Engineers 2002;45:525–9. https://doi.org/10.13031/2013.8849.
  • [5] Van Gerpen J. Biodiesel processing and production. Fuel Processing Technology 2005;86:1097–107. https://doi.org/10.1016/j.fuproc.2004.11.005.
  • [6] Gebremariam SN, Marchetti JM. Biodiesel production through sulfuric acid catalyzed transesterification of acidic oil: Techno economic feasibility of different process alternatives. Energy Conversion and Management 2018;174:639–48. https://doi.org/10.1016/j.enconman.2018.08.078.
  • [7] Ali MH, Mashud M, Rubel MR, Ahmad RH. Biodiesel from Neem oil as an alternative fuel for diesel engine. Procedia Engineering 2013;56:625–30. https://doi.org/10.1016/j.proeng.2013.03.169.
  • [8] Chouhan APS, Sarma AK. Biodiesel production from Jatropha curcas L. oil using Lemna perpusilla Torrey ash as heterogeneous catalyst. Biomass and Bioenergy 2013;55:386–9. https://doi.org/10.1016/j.biombioe.2013.02.009.
  • [9] Deeba F, Kumar V, Gautam K, Saxena RK, Sharma DK. Bioprocessing of Jatropha curcas seed oil and deoiled seed hulls for the production of biodiesel and biogas. Biomass and Bioenergy 2012;40:13–8. https://doi.org/10.1016/j.biombioe.2012.01.009.
  • [10] Ilkiliç C, Aydin S, Behcet R, Aydin H. Biodiesel from safflower oil and its application in a diesel engine. Fuel Processing Technology 2011;92:356–62. https://doi.org/10.1016/j.fuproc.2010.09.028.
  • [11] Deviren H, Çılgın E, Aydin S. Study on using nano magnesium oxide (MNMgO) nanoparticles as fuel additives in terebinth oil biodiesel blends in a research diesel engine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 2023;45:12181–200. https://doi.org/10.1080/15567036.2023.2270559.
  • [12] Deviren H, Çılğın E, Bayındır H. Role of analytical methods in verifying biodiesel upgrades: Emphasis on nanoparticle and acetone integration for enhanced performance, combustion, and emissions. Heat Transfer 2024;n/a. https://doi.org/10.1002/htj.23110.
  • [13] Fuse T, Kusu F, Takamura K. Determination of acid values of fats and oils by flow injection analysis with electrochemical detection. Journal of Pharmaceutical and Biomedical Analysis 1997;15:1515–9. https://doi.org/10.1016/S0731-7085(97)00039-3.
  • [14] Deviren H, Aydın H. Production and physicochemical properties of safflower seed oil extracted using different methods and its conversion to biodiesel. Fuel 2023;343:128001. https://doi.org/10.1016/j.fuel.2023.128001.
  • [15] Deviren H. Enhancing diesel engine efficiency and emission performance through oxygenated and non- oxygenated additives: A comparative study of alcohol and cycloalkane impacts on diesel-biodiesel blends. Energy 2024;307:132569. https://doi.org/10.1016/j.energy.2024.132569.
  • [16] Siatis NG, Kimbaris AC, Pappas CS, Tarantilis PA, Polissiou MG. Improvement of biodiesel production based on the application of ultrasound: Monitoring of the procedure by FTIR spectroscopy. JAOCS, Journal of the American Oil Chemists’ Society 2006;83:53–7. https://doi.org/10.1007/s11746-006-1175-1.
  • [17] Reyman D, Saiz Bermejo A, Ramirez Uceda I, Rodriguez Gamero M. A new FTIR method to monitor transesterification in biodiesel production by ultrasonication. Environmental Chemistry Letters 2014;12:235–40. https://doi.org/10.1007/s10311-013-0440-4.
  • [18] Sokoto M, Hassan L, Dangoggo S, Ahmad H, Uba A. Influence of Fatty Acid Methyl Esters on Fuel properties of Biodiesel Produced from the Seeds Oil of Curcubita pepo. Nigerian Journal of Basic and Applied Sciences 2011;19. https://doi.org/10.4314/njbas.v19i1.69348.
  • [19] Peng X, Chen H. Single cell oil production in solid-state fermentation by Microsphaeropsis sp. from steam- exploded wheat straw mixed with wheat bran. Bioresource Technology 2008;99:3885–9. https://doi.org/10.1016/j.biortech.2007.08.015.
  • [20] Vicente G, Bautista LF, Rodríguez R, Gutiérrez FJ, Sádaba I, Ruiz-Vázquez RM, et al. Biodiesel production from biomass of an oleaginous fungus. Biochemical Engineering Journal 2009;48:22–7. https://doi.org/10.1016/j.bej.2009.07.014.
  • [21] Hämäläinen T, Kamal-Eldin A. Analysis of Lipid Oxidation Products by NMR Spectroscopy. Analysis of Lipid Oxidation 2005:70–126. https://doi.org/10.1201/9781439822395.ch5.
  • [22] Knothe G, Kenar JA. Determination of the fatty acid profile by 1H-NMR spectroscopy. European Journal of Lipid Science and Technology 2004;106:88–96. https://doi.org/10.1002/ejlt.200300880.
  • [23] Knothe G. Analysis of oxidized biodiesel by 1H-NMR and effect of contact area with air. European Journal of Lipid Science and Technology 2006;108:493–500. https://doi.org/10.1002/ejlt.200500345.
  • [24] Noh S, Yoon SH. Stereospecific Positional Distribution of Fatty Acids of Camellia (Camellia japonica L.) Seed Oil. Journal of Food Science 2012;77:C1055–7. https://doi.org/10.1111/j.1750-3841.2012.02854.x.
  • [25] Alexandri E, Ahmed R, Siddiqui H, Choudhary MI, Tsiafoulis CG, Gerothanassis IP. High resolution NMR spectroscopy as a structural and analytical tool for unsaturated lipids in solution. Molecules 2017;22:1663. https://doi.org/10.3390/molecules22101663.
  • [26] Chutia GP, Chutia S, Kalita P, Phukan K. Xanthium strumarium seed as a potential source of heterogeneous catalyst and non-edible oil for biodiesel production. Biomass and Bioenergy 2023;172:106773. https://doi.org/10.1016/j.biombioe.2023.106773.
  • [27] AS S, CR Costa I. Investigation of Biodiesel Potential of Biomasses of Microalgaes Chlorella, Spirulina and Tetraselmis by NMR and GC-MS Techniques. Journal of Biotechnology & Biomaterials 2016;06:2. https://doi.org/10.4172/2155-952x.1000220.
  • [28] Sarpal AS, Teixeira CMLL, Silva PRM, Lima GM, Silva SR, Monteiro T V., et al. Determination of lipid content of oleaginous microalgal biomass by NMR spectroscopic and GC-MS techniques. Analytical and Bioanalytical Chemistry 2015;407:3799–816. https://doi.org/10.1007/s00216-015-8613-6.
  • [29] Sarpal AS, Silva SR, Silva PRM, Monteiro T V., Itacolomy J, Cunha VS, et al. Direct Method for the Determination of the Iodine Value of Biodiesel by Quantitative Nuclear Magnetic Resonance (q1H NMR) Spectroscopy. Energy and Fuels 2015;29:7956–68. https://doi.org/10.1021/acs.energyfuels.5b01462.
  • [30] S Sarpal A, R M. Silva P. Monitoring of Development of Certified Reference Material of Biodiesel by High Field NMR Spectroscopic Techniques. Journal of Scientific and Industrial Metrology 2016;01. https://doi.org/10.21767/2472-1948.100013.
  • [31] Sharma YC, Singh B, Upadhyay SN. Advancements in development and characterization of biodiesel: A review. Fuel 2008;87:2355–73. https://doi.org/10.1016/j.fuel.2008.01.014.
  • [32] Knothe G. Biodiesel and renewable diesel: A comparison. Progress in Energy and Combustion Science 2010;36:364–73. https://doi.org/10.1016/j.pecs.2009.11.004.
  • [33] Moser BR. Biodiesel production, properties, and feedstocks. In Vitro Cellular and Developmental Biology - Plant 2009;45:229–66. https://doi.org/10.1007/s11627-009-9204-z. [34] Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews 2012;16:2070–93. https://doi.org/10.1016/j.rser.2012.01.003.

Yüksek FFA İçerikli Yağlar: Doğrudan Transesterifikasyon ve Ardışık Esterifikasyon-Transesterifikasyon Prosesleri ile Biyodizel Üretiminin Karşılaştırmalı Analizi

Yıl 2024, Cilt: 40 Sayı: 3, 570 - 586, 30.12.2024

Öz

Bu çalışmada, yüksek serbest yağ asidi (FFA) içeriğine sahip menengiç yağı (TO) kullanılarak biyodizel üretimi, tek adımlı (transesterifikasyon) ve iki adımlı (esterifikasyon + transesterifikasyon) yöntemleri ile gerçekleştirilmiştir. %5,8 FFA içeriğine sahip TO, tek adımlı (TOTB100) ve iki adımlı (TOETB100) yöntemleriyle biyodizele dönüştürülmüş ve bu süreçlerin FFA oranının biyodizel verimliliğine etkisi analitik karakterizasyon yöntemleri ile incelenmiştir. Gaz Kromatografisi-Kütle Spektrometrisi (GC-MS) analiz sonuçlarına göre, TO örneğinde oleik asit içeriği %48,4 oranında tespit edilmiş ve TOETB100 biyodizelinde toplam Yağ Asidi Metil Esterleri (FAME) oranı %95,7 olarak hesaplanmıştır. Fourier Dönüşümlü Kızılötesi Spektroskopisi (FT-IR) analizinde, TOETB100 biyodizelinde 1438,1 cm⁻¹ dalga boyunda FAME oluşumunu gösteren karakteristik bir pik gözlemlenmiştir. Proton nükleer manyetik rezonans (¹H NMR) ve Karbon nükleer manyetik rezonans (¹³C NMR) analizleri, TOTB100 biyodizelinde düşük dönüşüm verimliliği (%60,74) gösterirken, TOETB100 biyodizelinde bu oran %78,01 olarak belirlenmiştir. Sonuç olarak, yüksek FFA içeriğine sahip yağların biyodizel üretiminde iki adımlı yöntemin, tek adımlı yönteme kıyasla daha yüksek verimlilik ve FAME oranı sağladığı belirlenmiştir. Bu bulgular, yüksek FFA içerikli yağların biyodizel üretiminde iki adımlı kimyasal sürecin daha uygun bir yöntem olduğunu ortaya koymaktadır.

Kaynakça

  • [1] Townsend CC, Davis PH. Flora of Turkey and the East Aegean Islands. Kew Bulletin 1973;28:328. https://doi.org/10.2307/4119794.
  • [2] Gercheva P, Zhivondov A, Nacheva L, Avanzato D. Transsexual forms of pistachio (pistacia terebinthus l.) from bulgaria - Biotechnological approaches for preservation, multiplication and inclusion in selection programs. Bulgarian Journal of Agricultural Science 2008;14:449–53.
  • [3] Özgür T, Özcanli M, Aydin K. Investigation of nanoparticle additives to biodiesel for improvement of the performance and exhaust emissions in a compression ignition engine. International Journal of Green Energy 2015;12:51–6. https://doi.org/10.1080/15435075.2014.889011.
  • [4] Dorado MP, Ballesteros E, De Almeida JA, Schellert C, Löhrlein HP, Krause R. An alkalai-catalyzed transesterification process for high free fatty acid waste oils. Transactions of the American Society of Agricultural Engineers 2002;45:525–9. https://doi.org/10.13031/2013.8849.
  • [5] Van Gerpen J. Biodiesel processing and production. Fuel Processing Technology 2005;86:1097–107. https://doi.org/10.1016/j.fuproc.2004.11.005.
  • [6] Gebremariam SN, Marchetti JM. Biodiesel production through sulfuric acid catalyzed transesterification of acidic oil: Techno economic feasibility of different process alternatives. Energy Conversion and Management 2018;174:639–48. https://doi.org/10.1016/j.enconman.2018.08.078.
  • [7] Ali MH, Mashud M, Rubel MR, Ahmad RH. Biodiesel from Neem oil as an alternative fuel for diesel engine. Procedia Engineering 2013;56:625–30. https://doi.org/10.1016/j.proeng.2013.03.169.
  • [8] Chouhan APS, Sarma AK. Biodiesel production from Jatropha curcas L. oil using Lemna perpusilla Torrey ash as heterogeneous catalyst. Biomass and Bioenergy 2013;55:386–9. https://doi.org/10.1016/j.biombioe.2013.02.009.
  • [9] Deeba F, Kumar V, Gautam K, Saxena RK, Sharma DK. Bioprocessing of Jatropha curcas seed oil and deoiled seed hulls for the production of biodiesel and biogas. Biomass and Bioenergy 2012;40:13–8. https://doi.org/10.1016/j.biombioe.2012.01.009.
  • [10] Ilkiliç C, Aydin S, Behcet R, Aydin H. Biodiesel from safflower oil and its application in a diesel engine. Fuel Processing Technology 2011;92:356–62. https://doi.org/10.1016/j.fuproc.2010.09.028.
  • [11] Deviren H, Çılgın E, Aydin S. Study on using nano magnesium oxide (MNMgO) nanoparticles as fuel additives in terebinth oil biodiesel blends in a research diesel engine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 2023;45:12181–200. https://doi.org/10.1080/15567036.2023.2270559.
  • [12] Deviren H, Çılğın E, Bayındır H. Role of analytical methods in verifying biodiesel upgrades: Emphasis on nanoparticle and acetone integration for enhanced performance, combustion, and emissions. Heat Transfer 2024;n/a. https://doi.org/10.1002/htj.23110.
  • [13] Fuse T, Kusu F, Takamura K. Determination of acid values of fats and oils by flow injection analysis with electrochemical detection. Journal of Pharmaceutical and Biomedical Analysis 1997;15:1515–9. https://doi.org/10.1016/S0731-7085(97)00039-3.
  • [14] Deviren H, Aydın H. Production and physicochemical properties of safflower seed oil extracted using different methods and its conversion to biodiesel. Fuel 2023;343:128001. https://doi.org/10.1016/j.fuel.2023.128001.
  • [15] Deviren H. Enhancing diesel engine efficiency and emission performance through oxygenated and non- oxygenated additives: A comparative study of alcohol and cycloalkane impacts on diesel-biodiesel blends. Energy 2024;307:132569. https://doi.org/10.1016/j.energy.2024.132569.
  • [16] Siatis NG, Kimbaris AC, Pappas CS, Tarantilis PA, Polissiou MG. Improvement of biodiesel production based on the application of ultrasound: Monitoring of the procedure by FTIR spectroscopy. JAOCS, Journal of the American Oil Chemists’ Society 2006;83:53–7. https://doi.org/10.1007/s11746-006-1175-1.
  • [17] Reyman D, Saiz Bermejo A, Ramirez Uceda I, Rodriguez Gamero M. A new FTIR method to monitor transesterification in biodiesel production by ultrasonication. Environmental Chemistry Letters 2014;12:235–40. https://doi.org/10.1007/s10311-013-0440-4.
  • [18] Sokoto M, Hassan L, Dangoggo S, Ahmad H, Uba A. Influence of Fatty Acid Methyl Esters on Fuel properties of Biodiesel Produced from the Seeds Oil of Curcubita pepo. Nigerian Journal of Basic and Applied Sciences 2011;19. https://doi.org/10.4314/njbas.v19i1.69348.
  • [19] Peng X, Chen H. Single cell oil production in solid-state fermentation by Microsphaeropsis sp. from steam- exploded wheat straw mixed with wheat bran. Bioresource Technology 2008;99:3885–9. https://doi.org/10.1016/j.biortech.2007.08.015.
  • [20] Vicente G, Bautista LF, Rodríguez R, Gutiérrez FJ, Sádaba I, Ruiz-Vázquez RM, et al. Biodiesel production from biomass of an oleaginous fungus. Biochemical Engineering Journal 2009;48:22–7. https://doi.org/10.1016/j.bej.2009.07.014.
  • [21] Hämäläinen T, Kamal-Eldin A. Analysis of Lipid Oxidation Products by NMR Spectroscopy. Analysis of Lipid Oxidation 2005:70–126. https://doi.org/10.1201/9781439822395.ch5.
  • [22] Knothe G, Kenar JA. Determination of the fatty acid profile by 1H-NMR spectroscopy. European Journal of Lipid Science and Technology 2004;106:88–96. https://doi.org/10.1002/ejlt.200300880.
  • [23] Knothe G. Analysis of oxidized biodiesel by 1H-NMR and effect of contact area with air. European Journal of Lipid Science and Technology 2006;108:493–500. https://doi.org/10.1002/ejlt.200500345.
  • [24] Noh S, Yoon SH. Stereospecific Positional Distribution of Fatty Acids of Camellia (Camellia japonica L.) Seed Oil. Journal of Food Science 2012;77:C1055–7. https://doi.org/10.1111/j.1750-3841.2012.02854.x.
  • [25] Alexandri E, Ahmed R, Siddiqui H, Choudhary MI, Tsiafoulis CG, Gerothanassis IP. High resolution NMR spectroscopy as a structural and analytical tool for unsaturated lipids in solution. Molecules 2017;22:1663. https://doi.org/10.3390/molecules22101663.
  • [26] Chutia GP, Chutia S, Kalita P, Phukan K. Xanthium strumarium seed as a potential source of heterogeneous catalyst and non-edible oil for biodiesel production. Biomass and Bioenergy 2023;172:106773. https://doi.org/10.1016/j.biombioe.2023.106773.
  • [27] AS S, CR Costa I. Investigation of Biodiesel Potential of Biomasses of Microalgaes Chlorella, Spirulina and Tetraselmis by NMR and GC-MS Techniques. Journal of Biotechnology & Biomaterials 2016;06:2. https://doi.org/10.4172/2155-952x.1000220.
  • [28] Sarpal AS, Teixeira CMLL, Silva PRM, Lima GM, Silva SR, Monteiro T V., et al. Determination of lipid content of oleaginous microalgal biomass by NMR spectroscopic and GC-MS techniques. Analytical and Bioanalytical Chemistry 2015;407:3799–816. https://doi.org/10.1007/s00216-015-8613-6.
  • [29] Sarpal AS, Silva SR, Silva PRM, Monteiro T V., Itacolomy J, Cunha VS, et al. Direct Method for the Determination of the Iodine Value of Biodiesel by Quantitative Nuclear Magnetic Resonance (q1H NMR) Spectroscopy. Energy and Fuels 2015;29:7956–68. https://doi.org/10.1021/acs.energyfuels.5b01462.
  • [30] S Sarpal A, R M. Silva P. Monitoring of Development of Certified Reference Material of Biodiesel by High Field NMR Spectroscopic Techniques. Journal of Scientific and Industrial Metrology 2016;01. https://doi.org/10.21767/2472-1948.100013.
  • [31] Sharma YC, Singh B, Upadhyay SN. Advancements in development and characterization of biodiesel: A review. Fuel 2008;87:2355–73. https://doi.org/10.1016/j.fuel.2008.01.014.
  • [32] Knothe G. Biodiesel and renewable diesel: A comparison. Progress in Energy and Combustion Science 2010;36:364–73. https://doi.org/10.1016/j.pecs.2009.11.004.
  • [33] Moser BR. Biodiesel production, properties, and feedstocks. In Vitro Cellular and Developmental Biology - Plant 2009;45:229–66. https://doi.org/10.1007/s11627-009-9204-z. [34] Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews 2012;16:2070–93. https://doi.org/10.1016/j.rser.2012.01.003.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yenilenebilir Enerji Sistemleri
Bölüm Makaleler
Yazarlar

Halis Deviren 0000-0002-8698-7576

Erdal Çılğın

Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 7 Ekim 2024
Kabul Tarihi 13 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 40 Sayı: 3

Kaynak Göster

APA Deviren, H., & Çılğın, E. (2024). Yüksek FFA İçerikli Yağlar: Doğrudan Transesterifikasyon ve Ardışık Esterifikasyon-Transesterifikasyon Prosesleri ile Biyodizel Üretiminin Karşılaştırmalı Analizi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 40(3), 570-586.
AMA Deviren H, Çılğın E. Yüksek FFA İçerikli Yağlar: Doğrudan Transesterifikasyon ve Ardışık Esterifikasyon-Transesterifikasyon Prosesleri ile Biyodizel Üretiminin Karşılaştırmalı Analizi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Aralık 2024;40(3):570-586.
Chicago Deviren, Halis, ve Erdal Çılğın. “Yüksek FFA İçerikli Yağlar: Doğrudan Transesterifikasyon Ve Ardışık Esterifikasyon-Transesterifikasyon Prosesleri Ile Biyodizel Üretiminin Karşılaştırmalı Analizi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 40, sy. 3 (Aralık 2024): 570-86.
EndNote Deviren H, Çılğın E (01 Aralık 2024) Yüksek FFA İçerikli Yağlar: Doğrudan Transesterifikasyon ve Ardışık Esterifikasyon-Transesterifikasyon Prosesleri ile Biyodizel Üretiminin Karşılaştırmalı Analizi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 40 3 570–586.
IEEE H. Deviren ve E. Çılğın, “Yüksek FFA İçerikli Yağlar: Doğrudan Transesterifikasyon ve Ardışık Esterifikasyon-Transesterifikasyon Prosesleri ile Biyodizel Üretiminin Karşılaştırmalı Analizi”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 40, sy. 3, ss. 570–586, 2024.
ISNAD Deviren, Halis - Çılğın, Erdal. “Yüksek FFA İçerikli Yağlar: Doğrudan Transesterifikasyon Ve Ardışık Esterifikasyon-Transesterifikasyon Prosesleri Ile Biyodizel Üretiminin Karşılaştırmalı Analizi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 40/3 (Aralık 2024), 570-586.
JAMA Deviren H, Çılğın E. Yüksek FFA İçerikli Yağlar: Doğrudan Transesterifikasyon ve Ardışık Esterifikasyon-Transesterifikasyon Prosesleri ile Biyodizel Üretiminin Karşılaştırmalı Analizi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2024;40:570–586.
MLA Deviren, Halis ve Erdal Çılğın. “Yüksek FFA İçerikli Yağlar: Doğrudan Transesterifikasyon Ve Ardışık Esterifikasyon-Transesterifikasyon Prosesleri Ile Biyodizel Üretiminin Karşılaştırmalı Analizi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 40, sy. 3, 2024, ss. 570-86.
Vancouver Deviren H, Çılğın E. Yüksek FFA İçerikli Yağlar: Doğrudan Transesterifikasyon ve Ardışık Esterifikasyon-Transesterifikasyon Prosesleri ile Biyodizel Üretiminin Karşılaştırmalı Analizi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2024;40(3):570-86.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.