Manual and Remote-Controlled Secondary Emission Calorimeter Modules for High-Radiation Environment
Yıl 2024,
Cilt: 40 Sayı: 3, 469 - 478, 30.12.2024
Nejdet Paran
,
Saleh Abubakar
,
Burak Tekgün
,
Emrah Tıraş
Öz
The demand for accurate, durable, and dependable radiation-resistant particle detectors and ionization calorimeters is increasing due to the rising brightness and extreme radiation conditions at particle colliders and accelerators. Secondary Emission (SE) Ionization Calorimetry is an innovative technology developed to quantify the energy of electromagnetic and hadronic particles, especially under high radiation conditions. This study examines the development and radiation testing of the innovative SE modules. The modules were produced by altering the standard Hamamatsu single anode R7761 Photomultiplier Tubes (PMTs). A SPICE model was constructed based on the parameters of the PMT system. The model's objective is to evaluate various divider circuits. Three distinct voltage conditions for the identical modules were established, and the new modules were evaluated utilizing cosmic background and gamma radiation sources. Results indicate that all three modes exhibit significant cosmic and gamma radiation sensitivity. Mode 1 and Mode 2 exhibit substantial signal sizes compared to Mode 3, which results from cosmic particle interactions. This study indicates that the SE module is a potential technology for future radiation-resistant nuclear and high-energy detectors. Since such detector systems are either in a high radiation area or a closed room/box, remote mode changes allow us to continue the experimental process without interruption. We can instantaneously observe the modes' effects by adding these signals to the interface where the modes are controlled.
Proje Numarası
FBA-2022-12207, FBG-2022-11499 ve FDS-2021-11525.
Kaynakça
- [1] V. Khachatryan, et. al., Dose rate effects in the radiation damage of the plastic scintillators of the CMS hadron endcap calorimeter, Journal of Instrumentation 11 (2016) T10004. https://doi.org/10.1088/1748-
0221/11/10/T10004.
- [2] U. Akgun, G. Funk, J. Corso, Z. Jia, D. Southwick, L. Adams, J. Kingyon, E. Tiras, T. Munhollon, E. Troendle, P. Bruecken, V. Khristenko, Y. Onel, Characterization of 1800 Hamamatsu R7600-M4 PMTs for CMS HF Calorimeter upgrade, Journal of Instrumentation 9 (2014) T06005.
- [3] S. Liao, R. Erasmus, H. Jivan, C. Pelwan, G. Peters, E. Sideras-Haddad, A comparative study of the radiation hardness of plastic scintillators for the upgrade of the Tile Calorimeter of the ATLAS detector, J Phys Conf Ser 645 (2015) 012021. https://doi.org/10.1088/1742-6596/645/1/012021.
- [4] A.M. Sirunyan, et. al, Measurements with silicon photomultipliers of dose-rate effects in the radiation damage of plastic scintillator tiles in the CMS hadron endcap calorimeter, JINST 15 (2020). https://doi.org/10.1088/1748-0221/15/06/p06009.
- [5] J. Wetzel, E. Tiras, B. Bilki, Y. Onel, D. Winn, Using LEDs to stimulate the recovery of radiation damage to plastic scintillators, Nucl Instrum Methods Phys Res B 395 (2017) 13–16.
- [6] J. Oliveira, V. Correia, E. Sowade, I. Etxebarria, R.D. Rodriguez, K.Y. Mitra, R.R. Baumann, S. Lanceros-Mendez, Indirect X-ray Detectors Based on Inkjet-Printed Photodetectors with a Screen-Printed Scintillator Layer, ACS Appl Mater Interfaces 10 (2018) 12904–12912. https://doi.org/10.1021/ACSAMI.8B00828/ASSET/IMAGES/LARGE/AM-2018-00828Q_0007.JPEG.
- [7] W. Frass, R. Walczak, C4: Particle Physics Major Option Particle Detectors, (n.d.).
- [8] P.W. Nicholson, Nuclear electronics, (1974).
- [9] D.R. Winn, Y. Onel, Secondary Emission Calorimeter Sensor Development, J Phys Conf Ser 404 (2012) 012021.
- [10] B. Bilki, K. Dilsiz, H. Ogul, Y. Onel, D. Southwick, E. Tiras, J. Wetzel, D.R. Winn, Secondary Emission Calorimetry, Instruments 6 (2022) 48. https://doi.org/10.3390/INSTRUMENTS6040048.
- [11] R.G. Lye, A.J. Dekker, Theory of Secondary Emission, Physical Review 107 (1957) 977.
- [12] B. Bilki, Secondary emission calorimetry R and D, 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2014 (2016). https://doi.org/10.1109/NSSMIC.2014.7431155.
- [13] A. Albayrak-Yetkin, B. Bilki, J. Corso, P. Debbins, G. Jennings, V. Khristenko, A. Mestvirisvilli, Y. Onel, I. Schmidt, C. Sanzeni, D. Southwick, D.R. Winn, T. Yetkin, Secondary Emission Calorimetry: Fast and Radiation-Hard, (2013).
- [14] F. Ozok, T. Yetkin, E.A. Yetkin, E. Iren, M.N. Erduran, Geant4 simulation of a conceptual calorimeter based on secondary electron emission, Journal of Instrumentation 12 (2017) P07014. https://doi.org/10.1088/1748-0221/12/07/P07014.
- [15] E. Tiras, Beam test results of Secondary Emission Ionization Calorimetry modules at Fermilab, Nucl Instrum Methods Phys Res A 1049 (2023) 168083. https://doi.org/10.1016/J.NIMA.2023.168083.
- [16] E. Tiras, K. Dilsiz, H. Ogul, D. Southwick, B. Bilki, J. Wetzel, J. Nachtman, Y. Onel, D. Winn, Characterization of photomultiplier tubes in a novel operation mode for Secondary Emission Ionization Calorimetry, Journal of Instrumentation 11 (2016).
- [17] G.A. Morton, Nuclear Radiation Detectors, Proceedings of the IRE 50 (1962).
- [18] A. Artikov, J. Boudagov, D. Chokheli, G. Drake, M. Gallinaro, M. Giunta, J. Grudzinski, J. Huston, M. Iori, D. Kim, M. Kim, N. Kimura, S. Kuhlmann, S. Lami, R. Miller, K. Nakamura, L. Nodulman, A. Penzo, K. Sato, J. Suh, N. Turini, F. Ukegawa, Y. Yamada, CDF Central Preshower and Crack Detector Upgrade, (2007). https://arxiv.org/abs/0706.3922v1 (accessed April 4, 2024).
- [19] H. Photonics, Photomultiplier Tubes: Basics and Application, 2006.
Yüksek Radyasyonlu Ortamlar için Manuel ve Uzaktan Kumandalı İkincil Emisyon Kalorimetre Modülleri
Yıl 2024,
Cilt: 40 Sayı: 3, 469 - 478, 30.12.2024
Nejdet Paran
,
Saleh Abubakar
,
Burak Tekgün
,
Emrah Tıraş
Öz
Parçacık çarpıştırıcıları ve hızlandırıcılarındaki artan parlaklık ve aşırı radyasyon koşulları nedeniyle, hassas, dayanıklı ve güvenilir, radyasyona dayanıklı parçacık dedektörleri ve iyonizasyon kalorimetrelerine olan talep artmaktadır. İkincil Emisyon (SE) İyonizasyon Kalorimetrisi, özellikle yüksek radyasyon koşulları altında elektromanyetik ve hadronik parçacıkların enerjisini ölçmek için geliştirilmiş yenilikçi bir teknolojidir. Bu çalışma, yeni SE modüllerinin geliştirilmesini ve radyasyon testlerini incelemektedir. Modüller, standart Hamamatsu tek anotlu R7761 Fotoçoğaltıcı Tüpler (PMT'ler) değiştirilerek üretilmiştir. PMT sisteminin parametrelerine dayalı bir SPICE modeli oluşturulmuştur. Modelin amacı çeşitli bölücü devrelerle incelemektir. Aynı modül için üç farklı voltaj koşulu oluşturulmuş ve yeni modüller kozmik arka plan ve gama radyasyon kaynakları kullanılarak ölçümler alınmıştır. Sonuçlar, her üç modun da önemli ölçüde kozmik ve gama radyasyon hassasiyeti sergilediğini göstermektedir. Mod 1 ve Mod 2, kozmik parçacık etkileşimlerinden kaynaklanan sinyal boyutları açısından Mod 3'e kıyasla önemli bir fark sergilemektedir. Bu çalışma, SE modülünün gelecekteki radyasyona dayanıklı nükleer ve yüksek enerjili dedektörler için potansiyel bir teknoloji olduğunu göstermektedir. Bu tür dedektör sistemleri ya yüksek radyasyonlu bir alanda ya da kapalı bir odada/kutuda olduğundan, uzaktan mod değişiklikleri deneysel süreci kesintiye uğratmadan devam ettirmemizi sağlar. Bu sinyalleri modların kontrol edildiği arayüze ekleyerek modların etkilerini anlık olarak gözlemleyebiliriz.
Destekleyen Kurum
Erciyes Üniversitesi
Proje Numarası
FBA-2022-12207, FBG-2022-11499 ve FDS-2021-11525.
Teşekkür
This work was supported by Scientific Research Projects (BAP) of Erciyes University, Türkiye, under the grant contracts of FBA-2022-12207, FBG-2022-11499 and FDS-2021-11525. Dr. Emrah Tiras is thankful for the support by Turkish Academy of Sciences (TUBA) under the grant of the Outstanding Young Scientists Awards Program (GEBIP). We would like to thank the Office of the Dean for Research for providing the Lab’s infrastructure at the ARGEPARK building at Erciyes University.
Kaynakça
- [1] V. Khachatryan, et. al., Dose rate effects in the radiation damage of the plastic scintillators of the CMS hadron endcap calorimeter, Journal of Instrumentation 11 (2016) T10004. https://doi.org/10.1088/1748-
0221/11/10/T10004.
- [2] U. Akgun, G. Funk, J. Corso, Z. Jia, D. Southwick, L. Adams, J. Kingyon, E. Tiras, T. Munhollon, E. Troendle, P. Bruecken, V. Khristenko, Y. Onel, Characterization of 1800 Hamamatsu R7600-M4 PMTs for CMS HF Calorimeter upgrade, Journal of Instrumentation 9 (2014) T06005.
- [3] S. Liao, R. Erasmus, H. Jivan, C. Pelwan, G. Peters, E. Sideras-Haddad, A comparative study of the radiation hardness of plastic scintillators for the upgrade of the Tile Calorimeter of the ATLAS detector, J Phys Conf Ser 645 (2015) 012021. https://doi.org/10.1088/1742-6596/645/1/012021.
- [4] A.M. Sirunyan, et. al, Measurements with silicon photomultipliers of dose-rate effects in the radiation damage of plastic scintillator tiles in the CMS hadron endcap calorimeter, JINST 15 (2020). https://doi.org/10.1088/1748-0221/15/06/p06009.
- [5] J. Wetzel, E. Tiras, B. Bilki, Y. Onel, D. Winn, Using LEDs to stimulate the recovery of radiation damage to plastic scintillators, Nucl Instrum Methods Phys Res B 395 (2017) 13–16.
- [6] J. Oliveira, V. Correia, E. Sowade, I. Etxebarria, R.D. Rodriguez, K.Y. Mitra, R.R. Baumann, S. Lanceros-Mendez, Indirect X-ray Detectors Based on Inkjet-Printed Photodetectors with a Screen-Printed Scintillator Layer, ACS Appl Mater Interfaces 10 (2018) 12904–12912. https://doi.org/10.1021/ACSAMI.8B00828/ASSET/IMAGES/LARGE/AM-2018-00828Q_0007.JPEG.
- [7] W. Frass, R. Walczak, C4: Particle Physics Major Option Particle Detectors, (n.d.).
- [8] P.W. Nicholson, Nuclear electronics, (1974).
- [9] D.R. Winn, Y. Onel, Secondary Emission Calorimeter Sensor Development, J Phys Conf Ser 404 (2012) 012021.
- [10] B. Bilki, K. Dilsiz, H. Ogul, Y. Onel, D. Southwick, E. Tiras, J. Wetzel, D.R. Winn, Secondary Emission Calorimetry, Instruments 6 (2022) 48. https://doi.org/10.3390/INSTRUMENTS6040048.
- [11] R.G. Lye, A.J. Dekker, Theory of Secondary Emission, Physical Review 107 (1957) 977.
- [12] B. Bilki, Secondary emission calorimetry R and D, 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2014 (2016). https://doi.org/10.1109/NSSMIC.2014.7431155.
- [13] A. Albayrak-Yetkin, B. Bilki, J. Corso, P. Debbins, G. Jennings, V. Khristenko, A. Mestvirisvilli, Y. Onel, I. Schmidt, C. Sanzeni, D. Southwick, D.R. Winn, T. Yetkin, Secondary Emission Calorimetry: Fast and Radiation-Hard, (2013).
- [14] F. Ozok, T. Yetkin, E.A. Yetkin, E. Iren, M.N. Erduran, Geant4 simulation of a conceptual calorimeter based on secondary electron emission, Journal of Instrumentation 12 (2017) P07014. https://doi.org/10.1088/1748-0221/12/07/P07014.
- [15] E. Tiras, Beam test results of Secondary Emission Ionization Calorimetry modules at Fermilab, Nucl Instrum Methods Phys Res A 1049 (2023) 168083. https://doi.org/10.1016/J.NIMA.2023.168083.
- [16] E. Tiras, K. Dilsiz, H. Ogul, D. Southwick, B. Bilki, J. Wetzel, J. Nachtman, Y. Onel, D. Winn, Characterization of photomultiplier tubes in a novel operation mode for Secondary Emission Ionization Calorimetry, Journal of Instrumentation 11 (2016).
- [17] G.A. Morton, Nuclear Radiation Detectors, Proceedings of the IRE 50 (1962).
- [18] A. Artikov, J. Boudagov, D. Chokheli, G. Drake, M. Gallinaro, M. Giunta, J. Grudzinski, J. Huston, M. Iori, D. Kim, M. Kim, N. Kimura, S. Kuhlmann, S. Lami, R. Miller, K. Nakamura, L. Nodulman, A. Penzo, K. Sato, J. Suh, N. Turini, F. Ukegawa, Y. Yamada, CDF Central Preshower and Crack Detector Upgrade, (2007). https://arxiv.org/abs/0706.3922v1 (accessed April 4, 2024).
- [19] H. Photonics, Photomultiplier Tubes: Basics and Application, 2006.