Araştırma Makalesi
BibTex RIS Kaynak Göster

Designing Climate-Responsive Learning Environments: Rethinking Educational Buildings Across Türkiye's Diverse Climatic Zones

Yıl 2025, Cilt: 41 Sayı: 1, 282 - 317, 30.04.2025

Öz

Abstract: The design of educational buildings plays a crucial role in students' comfort, well-being, and the functionality of their learning environments, with climate-responsive design being critical for addressing global climate challenges, ensuring energy efficiency, sustainability and resilience to extreme weather conditions in addition to occupant comfort. In Türkiye, the impact of varying climatic conditions on school design is often disregarded, resulting in the use of uniform designs that may not meet regional climatic needs, potentially leading to concerns with indoor comfort, energy efficiency, air quality, and, ultimately, adversely impacting student health, well-being, and academic performance.
This study aims to investigate the uniformity of educational building designs across
Türkiye’s climatic regions evaluate their climate responsiveness and predict the potential short- and long-term impacts on student health, well-being, and academic performance in cases where climate-responsive design is insufficient. Köppen climate classification was used to categorise Türkiye's climatic zones and select pilot cities with extreme heat and cold conditions. The educational buildings in these cities were evaluated for design uniformity and climate responsiveness. Finally, the potential impacts of the identified uniformity and lack of climate-responsive design were synthesised from the literature.
The findings revealed that despite significant climatic differences, many schools in Türkiye share similar designs that do not adequately address regional climate needs, which could have important implications for both the learning environment and student equity, potentially exacerbating disparities between students in different regions. The study emphasises the critical need to incorporate climate-responsive design strategies in educational buildings to enhance not only the current indoor conditions but also to address future challenges posed by climate change, improve energy efficiency, and, most importantly, foster equitable and supportive learning environments for all students. Further experimental studies are recommended to assess the impact of climate-responsive design on students' health, well-being, and cognitive performance.

Kaynakça

  • E. Firman and K. S. Dedy Sandiarsa, “The Effect of Learning Environment on Students’ Motivation in Learning,” Jurnal Ilmiah Mandala Education (JIME), vol. 10, no. 4, pp. 1046–1051, 2024, doi: 10.58258/jime.v9i1.7614/http.
  • J. E. Baluyos, A. C. Canastra, J. Dionio, H. Ilusorio, C. C. Jimenez, and G. R. Baluyos, “Influence of Environmental Conditions and The Students’ Health,” ARRUS Journal of Social Sciences and Humanities, vol. 4, no. 2, pp. 255–269, 2024, doi: 10.35877/soshum2507.
  • I. B. Chrzanowska, “Educational Space in Inclusive Education – Challenges in Working witha Diverse Group/Class,” Lubelski Rocznik Pedagogiczny, vol. 42, no. 4, pp. 59–75, 2024, doi: 10.17951/lrp.2023.42.4.59-75.
  • O. Ndimako, O. Babalola, and U. Ugah, “Students’ Wellness and Mindfulness in School Designs,” 2024. doi: 10.20944/preprints202408.1518.v1.
  • G. Akkose, C. Meral Akgul, and I. G. Dino, “Educational building retrofit under climate change and urban heat island effect,” Journal of Building Engineering, vol. 40, Aug. 2021, doi: 10.1016/j.jobe.2021.102294.
  • C. Lops, F. Serpilli, V. D’Alessandro, and S. Montelpare, “Climate Change and Building Renovation: The Impact of Historical, Current, and Future Climatic Files on a School in Central Italy,” Applied Sciences (Switzerland), vol. 14, no. 19, Oct. 2024, doi: 10.3390/app14199067.
  • C. Baglivo, “Dynamic evaluation of the effects of climate change on the energy renovation of a school in a mediterranean climate,” Sustainability (Switzerland), vol. 13, no. 11, Jun. 2021, doi: 10.3390/su13116375.
  • Y. Yaşar, A. Pehlevan, and E. Altıntaş, “İlköğretim dersliklerinde termal konfor araştırması,” in VIII. Ulusal Tesisat Mühendisliği Kongresi, 2007, pp. 199–208.
  • Y. Afacan, “Impact of Climate Zone and Orientation Angle on the Recurring Massing School Typologies in Turkey,” in Sustainability in Energy and Buildings 2021, vol. 263, J. R. Littlewood, R. J. Howlett, and L. C. Jain, Eds., Springer, 2022, pp. 11–27. [Online]. Available: http://www.springer.com/series/8767
  • J. M. Evans and S. Schiller, “Bridging the gap between climate and design: A bioclimatic design course for architectural students in Argentina,” Energy Build, vol. 15, no. 1–2, pp. 43–50, 1990.
  • E. Ş. Özen and Ö. Sümengen, “Türkiye’nin Farklı İklim Bölgelerinde ‘Binalarda Gün ışığı Kullanımı’ Standartı Çerçevesinde Değerlendirilmesi,” Fen Bilimleri Enstitüsü Dergisi, vol. 38, no. 2, pp. 292–313, 2022.
  • P. Gaonkar, A. Nakkeeran, J. Bapat, and D. Das, “Air quality and thermal comfort management for energy- efficient large public buildings,” Architecture, Structures and Construction, vol. 3, no. 1, pp. 25–40, Apr. 2023, doi: 10.1007/s44150-022-00059-4.
  • A. Chazarra Bernabé, B. Lorenzo Mariño, R. Romero Fresneda, and J. V. M. G. Moreno García, “Observed Changes of Köppen Climate Zones in Spain since 1951,” Espacio Tiempo y Forma. Serie VI, Geografía, no. 16, pp. 133–144, 2023, doi: 10.5944/etfvi.16.2023.38777.
  • Kuranlıoğlu, D. and İzmir Tunahan, G. “Türkiye’nin İklimsel Çeşitliliği Bağlamında Mimari Tasarımda Tek Tip Proje Yaklaşımının Değerlendirilmesi,” in 1. Bilsel International Midas Scientific Researches Congress, G. Yaldız, Ed., Eskişehir, Türkiye: Bilsel Publishing, Mar. 2025, pp. 206–219.
  • T. Glaves and M. Talpade, “An Exploration of The Types of Educational Environments Deemed Optimal for Learning by Students,” International Journal of Arts, Humanities & Social Science, vol. 5, no. 6, pp. 31–37, 2024, doi: 10.56734/ijahss.v5n6a5.
  • P. Cardellino and P. Woolner, “Designing for transformation – a case study of open learning spaces and educational change,” Pedagogy Culture and Society, vol. 28, no. 1, pp. 1–20, 2019.
  • L. Wang, “Relationships between Acoustics, Thermal, Indoor Air Quality, and Lighting Conditions on Student Achievement in K-12 Classrooms,” in INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Glasgow, Scotland: Institute of Noise Control Engineering, Feb. 2023, pp. 260–263.
  • T. Cătălina and T. Banu, “Impact of indoor environmental conditions on students intellectual performance,” Buletinul Institutului Politehnic Din Iaşi, vol. 64, no. 3, pp. 23–35, 2014.
  • R. E. C. Lucas, L. B. da Silva, E. L. de Souza, W. K. dos S. Leite, and J. M. N. da Silva, “Influence of environmental variables on students’ cognitive performance in indoor higher education environments,” Work, vol. 79, pp. 351–360, 2024, doi: 10.3233/wor-220055.
  • G. I. Earthman, “School Facility Conditions and Student Academic Achievement,” 2002. Accessed: Jan. 10, 2025. [Online]. Available: https://escholarship.org/uc/item/5sw56439
  • S. Gölemen, N. Taş, and M. Taş, “The changes of sustainable primary school buildings,” in Eco-Architecture VI: Harmonisation between Architecture and Nature, WIT Press, Jul. 2016, pp. 11–22. doi: 10.2495/arc160021.
  • J. Gu and F. Bal Koçyiğit, “Zero Consumption Monotype Education Buildings,” 2018. [Online]. Available: http://dergipark.gov.tr/gujs
  • F. N. Aksin and S. A. Selçuk, “Energy performance optimization of school buildings in different climates of Turkey,” Future Cities and Environment, vol. 7, no. 1, 2021, doi: 10.5334/fce.107.
  • H. D. Arslan, “Evaluation of a School Building in Turkey According to the Basic Sustainable Design Criteria,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, Sep. 2017. doi: 10.1088/1755-1315/83/1/012026.
  • T. Ashrafian, “Enhancing school buildings energy efficiency under climate change: A comprehensive analysis of energy, cost, and comfort factors,” Journal of Building Engineering, vol. 80, Dec. 2023, doi: 10.1016/j.jobe.2023.107969.
  • R. Afren, M. Benabbas, N. Zemmouri, and D. Djaghrouri, “Impact of the typology of school buildings on the internal thermal conditions, in a hot and dry climate,” in Energy Procedia, Elsevier Ltd, 2017, pp. 505– 510. doi: 10.1016/j.egypro.2017.07.305.
  • A. Kaihoul, E. Pitzali, and L. Sriti, “An Exploration of Climate-Responsive Design Strategies Employed by El-Miniawy Brothers in Southern Algeria,” Journal of Sustainable Architecture and Civil Engineering, vol. 35, no. 3, pp. 32–54, 2024, doi: 10.5755/j01.sace.35.3.36863.
  • D. Maučec, M. Premrov, and V. Ž. Leskovar, “Use of sensitivity analysis for a determination of dominant design parameters affecting energy efficiency of timber buildings in different climates,” Energy for Sustainable Development, vol. 63, pp. 86–102, Aug. 2021, doi: 10.1016/j.esd.2021.06.003.
  • H. Benharchache, F. Khaldi, and M. Hanfer, “The Effect of External Walls on Energy Performance of Algerian Rural Building in Different Climatic Zones,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 107, no. 2, pp. 171–190, Jul. 2023, doi: 10.37934/arfmts.107.2.171190.
  • N. Amani, “Simulation-based design: minimizing energy consumption in residential buildings through optimal thermal insulation,” World Journal of Engineering, 2024, doi: 10.1108/WJE-04-2024-0188.
  • H. Tawfeeq and A. M. A. Qaradaghi, “Optimising Window-to-Wall Ratio for Enhanced Energy Efficiency and Building Intelligence in Hot Summer Mediterranean Climates,” Sustainability, vol. 16, no. 17, p. 7342, Aug. 2024, doi: 10.3390/su16177342.
  • A. Kabanshi, G. Choonya, A. Ameen, W. Liu, and E. Mulenga, “Windows of Opportunities: Orientation, Sizing and PV-Shading of the Glazed Area to Reduce Cooling Energy Demand in Sub-Sahara Africa,” Energies (Basel), vol. 16, no. 9, May 2023, doi: 10.3390/en16093834.
  • S. Mirrahimi, N. Lukman, N. Ibrahim, and M. Surat, “Estimation Daylight to Find Simple Formulate Based on the Ratio of Window Area to Floor Area Rule of Thumb for Classroom in Malaysia,” Research Journal of Applied Sciences, Engineering and Technology, vol. 6, no. 5, pp. 931–935, 2013.
  • Y. V. Perez and I. G. Capeluto, “Climatic considerations in school building design in the hot-humid climate for reducing energy consumption,” Appl Energy, vol. 86, no. 3, pp. 340–348, 2009, doi: 10.1016/j.apenergy.2008.05.007.
  • P. Kr. Chaturvedi, N. Kumar, R. Lamba, and K. Mehta, “Multi-objective optimization of glazing and shading configurations for visual, thermal, and energy performance of cooling dominant climatic regions of India,” Sep. 27, 2024. doi: 10.21203/rs.3.rs-4983831/v1.
  • K. Wehrli et al., “Building design in a changing climate – Future Swiss reference years for building simulations,” Clim Serv, vol. 34, Apr. 2024, doi: 10.1016/j.cliser.2024.100448.
  • D. Satpal, A. Kalpana, and B. Kumar, “Optimizing Energy Efficiency to Design IGBC Green Schools in Composite Climate,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics, 2024. doi: 10.1088/1755-1315/1326/1/012045.
  • M. Salameh and B. Touqan, “Designing Climate-Adaptive Buildings: Impact of Courtyard Geometry on Microclimates in Hot, Dry Environments,” Civil Engineering Journal (Iran), vol. 10, no. 8, pp. 2698–2718, Aug. 2024, doi: 10.28991/CEJ-2024-010-08-017.
  • S. C. Asha and M. A. Blessing, “Environment Modifying in Inclusive Education,” Shanlax International Journal of Arts, Science and Humanities, vol. 11, no. Special Issue 1, pp. 5–9, 2023, doi: 10.34293/sijash.
  • T. Vinsela Jeev, “Causes and Effects of Climate Change in Education,” Shanlax International Journal of Arts, Science and Humanities, vol. 11, no. Special Issue 2, pp. 65–68, 2024, doi: 10.34293/sijash.
  • S. Venegas Marin, L. Schwarz, and S. Sabarwal, “Impacts of Extreme Weather Events on Education Outcomes: A Review of Evidence,” World Bank Res Obs, vol. 39, no. 2, pp. 177–226, 2024.
  • M. H. AL Hussaini, “Impact of Climate on Student Education and Their Future Development,” International Journal of Integrative Sciences, vol. 2, no. 4, pp. 525–534, May 2023, doi: 10.55927/ijis.v2i4.3951.
  • E. M. Preña and C. P. Labayo, “Policy responses to extreme heat and its impact on education: The Philippine experience,” Policy Futures in Education, 2024, doi: 10.1177/14782103241288276.
  • Y. K. Juan and Y. Chen, “The influence of indoor environmental factors on learning: An experiment combining physiological and psychological measurements,” Build Environ, vol. 221, Aug. 2022, doi: 10.1016/j.buildenv.2022.109299.
  • H. W. Brink, M. G. L. C. Loomans, M. P. Mobach, and H. S. M. Kort, “Classrooms’ indoor environmental conditions affecting the academic achievement of students and teachers in higher education: A systematic literature review,” Indoor Air, vol. 31, no. 2, pp. 405–425, Mar. 2021, doi: 10.1111/ina.12745.
  • A. Michael and C. Heracleous, “Assessment of natural lighting performance and visual comfort of educational architecture in Southern Europe: The case of typical educational school premises in Cyprus,” Energy Build, vol. 140, pp. 443–457, Apr. 2017, doi: 10.1016/j.enbuild.2016.12.087.
  • Z. S. Zomorodian, M. Tahsildoost, and M. Hafezi, “Thermal comfort in educational buildings: A review article,” Jun. 01, 2016, Elsevier Ltd. doi: 10.1016/j.rser.2016.01.033.
  • Y. P. Villarreal Arroyo, R. Peñabaena-Niebles, and C. Berdugo Correa, “Influence of environmental conditions on students’ learning processes: A systematic review,” Mar. 01, 2023, Elsevier Ltd. doi: 10.1016/j.buildenv.2023.110051.
  • P. Sarıcıoğlu and İ. Ayçam, “A framework for the evaluation of buildings in the context of climate change for Turkey,” GRID - Architecture, Planning and Design Journal, Jul. 2021, doi: 10.37246/grid.934644.
  • Y. Yildiz and M. Kocyigit, “Energy consumption analysis of education buildings: The case study of balikesir university,” Gazi University Journal of Science, vol. 34, no. 3, pp. 665–677, 2021, doi: 10.35378/gujs.722746.
  • E. Bölük, O. Eskioğlu, Y. Çalık, and S. Yağan, “Köppen İklim Sınıflandırmasına Göre Türkiye İklimi,” Jan. 2023.
  • Meteoroloji Genel Müdürlüğü, “İllere Ait Mevsim Normalleri (1991-2020),” https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H. Accessed: Nov. 16, 2025. [Online]. Available: https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H
  • Weather Spark, “The Weather Year Round Anywhere on Earth,” https://weatherspark.com/. Accessed: Nov. 14, 2024. [Online]. Available: https://weatherspark.com/
  • Z. Qin, “Credibilistic Mean-Absolute Deviation Model,” in Uncertainty and Operations Research Uncertain Portfolio Optimization, Beijing, China: Springer, 2016, ch. 3, pp. 53–67. [Online]. Available: http://www.springer.com/series/11709
  • Milli Eğitim Bakanlığı, “Eğitim Yapıları Asgari Tasarım Standartları Kılavuzu,” 2015.
  • U. Atmaca, “TS 825 Binalarda Isı Yalıtım Kuralları Standardındaki Güncellemeler,” Tesisat Mühendisliği, no. 154, pp. 21–35, 2016.
  • Vstarenergy, “Building Thermal Rating Assessors,” Vstarenergy. Accessed: Dec. 20, 2024. [Online]. Available: https://vstarenergy.com.au/2024/08/19/window-to-wall- ratio/#:~:text=Ideal%20WWR%3A%2020%2D40%25,enhance%20energy%20efficiency%20and%20co mfort
  • E. Bölük, O. Eskioğlu, Y. Çalık, and S. Yağan, “Köppen İklim Sınıflandırmasına Göre Türkiye İklimi,” Jan. 2023.
  • A. Caporale, F. Gabriele Galizia, L. Botti, and C. Mora, “Thermal comfort prediction of aged industrial workers based on occupants’ basal metabolic rate,” in Social and Occupational Ergonomics, AHFE International, 2022. doi: 10.54941/ahfe1002666.
  • U. Unver, E. Adigüzel, E. Adıgüzel, and S. Çivi, “Türkiye’deki İklim Bölgelerine Göre Binalarda Isı Yalıtım Uygulamaları Application of Thermal Insulation in Buildings by Climate Zones in Turkey,” İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, vol. 1, no. 2, pp. 171–187, 2020, [Online]. Available: https://www.researchgate.net/publication/348371986
  • T. K. P. Nguyen and E. V. Korkina, “Connectivity of the Window to Floor Area Ratio and the Daylighting Assessment Criteria,” Iranian Journal of Science and Technology - Transactions of Civil Engineering, vol. 45, no. 3, pp. 2035–2045, Sep. 2021, doi: 10.1007/s40996-021-00681-0.
  • M. M. Hassieb, A. Ragab, and A. F. Mohamed, “Quantifying the Influence of Window-to-Wall Ratio (WWR) on Indoor Air Quality and Thermal Comfort: Classroom Study in Hot Arid Climates,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics, 2024. doi: 10.1088/1755- 1315/1396/1/012025.
  • E. Garcia-Nevado, B. Beckers, H. C. Roura, and I. Crespo, “Façade design and energy demand: fenestration indexes from an urban approach,” 2017.
  • S. A. Olaniyan, I. I. Adebisi, and O. O. . Onigbogi, “Between Fancy and Functionality: Comparative Thermal Performance Analyses of Selected External Building Shading Elements in Tropical Building Design,” LAUTECH Journal of Civil and Environmental Studies, vol. 11, no. 1, Sep. 2023, doi: 10.36108/laujoces/3202.11.0140.
  • F. Işıker and M. F. Bölük, “Okul tasarımlarında mekansal olasılıklar,” in Uluslararası Mimarlık ve Tasarım Kongresi, İstanbul Bilim ve Akademisyenler Derneği, 2016, pp. 142–152.
  • K. Çelik, “Eğitim yapıları tasarım kılavuzları bağlamında dersliklerin görsel konfor ve enerji kullanımı açısından değerlendirilmesi,” Journal of International Social Research, vol. 12, no. 63, pp. 441–447, Apr. 2019, doi: 10.17719/jisr.2019.3241.
  • C. Demir Yıldız and B. Dönmez, “Anadolu Liseleri Tip Projelerinin Milli Eğitim Bakanlığı Eğitim Yapıları Asgari Tasarım Standartları Açısından Değerlendirilmesi,” in Eğitim Yönetimi Araştırmaları, 1st ed., S. Akbaba Altun, D. Örücü, K. Beycioğlu, Y. Kondakçı, and S. Koşar, Eds., Pegem Akademi, 2017, pp. 204–221. doi: 10.14527/9786052411551.
  • G. Özer, P. Çulun, and F. Kürüm Varolgüneş, “Assessment and improvement of thermal comfort conditions in educational buildings: an example of a secondary school,” Türk Doğa ve Fen Dergisi, vol. 13, no. 4, pp. 91–106, Dec. 2024, doi: 10.46810/tdfd.1525408.
  • S. Sadrizadeh et al., “Indoor air quality and health in schools: A critical review for developing the roadmap for the future school environment,” Journal of Building Engineering, vol. 57, Oct. 2022, doi: 10.1016/j.jobe.2022.104908.
  • A. Baba, I. Shahrour, and M. Baba, “Indoor Environmental Quality for Comfort Learning Environments: Case Study of Palestinian School Buildings,” Buildings, vol. 14, no. 5, May 2024, doi: 10.3390/buildings14051296.
  • S. Okçu, E. Ryherd, and C. Bayer, “The role of physical environment on student health and education in green schools,” Rev Environ Health, vol. 26, no. 3, pp. 169–179, 2011.
  • S. Aghamohammadiha and N. Dehghan, “Optimum Geometry of Double-skin Self-Shading Facade of Classrooms with the Aim of Creating Energy Saving and Visual Comfort in Isfahan Province, Iran,” Journal of Daylighting, vol. 11, no. 2, pp. 372–389, Nov. 2024, doi: 10.15627/jd.2024.25.
  • P. Singh, “Indoor Environmental Quality & Student Health and Performance: A Conceptual Review,” 2013. [Online]. Available: http://www.ijmra.us
  • S. Mathiarasan and A. Hüls, “Impact of environmental injustice on children’s health—interaction between air pollution and socioeconomic status,” Jan. 02, 2021, MDPI AG. doi: 10.3390/ijerph18020795.
  • B. Lala and A. Hagishima, “Impact of Escalating Heat Waves on Students’ Well-Being and Overall Health: A Survey of Primary School Teachers,” Climate, vol. 11, no. 6, Jun. 2023, doi: 10.3390/cli11060126.
  • P. Alamdari, “Primary School Buildings Renovation in Cold Climates: Optimizing Window Size and Opening for Thermal Comfort, Indoor Air Quality, and Energy Performance,” 2022. [Online]. Available: https://www.researchgate.net/publication/365747113
  • A. Altassan, “Sustainable Integration of Solar Energy, Behavior Change, and Recycling Practices in Educational Institutions: A Holistic Framework for Environmental Conservation and Quality Education,” Sustainability (Switzerland), vol. 15, no. 20, Oct. 2023, doi: 10.3390/su152015157.
  • J. Kim, H. Naganathan, S. Moon, and D. Jang, “Optimizing Comfort and Sustainability: The Impact of Passive Cooling and Eco-Friendly Materials on Indoor Temperature Reduction—A Case Study,” Buildings, vol. 14, no. 10, Oct. 2024, doi: 10.3390/buildings14103218.
  • G. Lamberti, G. Salvadori, F. Leccese, F. Fantozzi, and P. M. Bluyssen, “Advancement on thermal comfort in educational buildings: Current issues and way forward,” Sustainability (Switzerland), vol. 13, no. 18, Sep. 2021, doi: 10.3390/su131810315.
  • S. Jaouaf, B. Bensaad, and M. Habib, “Passive strategies for energy-efficient educational facilities: Insights from a mediterranean primary school,” Energy Reports, vol. 11, pp. 3653–3683, Jun. 2024, doi: 10.1016/j.egyr.2024.03.040.

İklime Duyarlı Öğrenme Ortamları Tasarlamak: Türkiye'nin Çeşitli İklim Bölgelerinde Eğitim Binalarını Yeniden Düşünmek

Yıl 2025, Cilt: 41 Sayı: 1, 282 - 317, 30.04.2025

Öz

Öz: Eğitim binalarının tasarımı, öğrencilerin konforu, refahı ve öğrenme ortamlarının işlevselliği açısından önemli bir rol oynamaktadır. İklime duyarlı tasarım, küresel iklim zorluklarını ele almak, enerji verimliliği, sürdürülebilirlik ve aşırı hava koşullarına dayanıklılığın yanı sıra kullanıcı konforunun sağlanması açısından kritik öneme sahiptir. Türkiye'de, değişen iklim koşullarının okul tasarımı üzerindeki etkisi genellikle göz ardı edilmekte ve bu da bölgesel iklim ihtiyaçlarını karşılayamayan tek tip tasarımların kullanılmasıyla sonuçlanmaktadır.
Bu durum iç mekan konforu, enerji verimliliği, hava kalitesiyle ilgili endişelere yol açabilmekte ve nihayetinde öğrenci sağlığını, refahını ve akademik performansını olumsuz etkileyebilmektedir.
Bu çalışma, eğitim binası tasarımlarının Türkiye'nin iklim bölgeleri genelinde tekdüzeliğini araştırmayı amaçlamaktadır. İklime duyarlılıklarını değerlendirmek ve iklime duyarlı tasarımın yetersiz olduğu durumlarda öğrenci sağlığı, refahı ve akademik performansı üzerindeki olası kısa ve uzun vadeli etkileri tahmin etmekte çalışmanın amaçları arasında yer almaktadır. Köppen iklim sınıflandırması, Türkiye'nin iklim bölgelerini kategorize etmek ve aşırı sıcak ve soğuk koşullarına sahip pilot şehirleri seçmek için kullanılmıştır. Pilot şehirlerdeki eğitim binaları tasarım tekdüzeliği ve iklime duyarlılık açısından değerlendirilmiştir. Son olarak, belirlenen tekdüzeliğin ve iklime duyarlı tasarım eksikliğinin potansiyel etkileri literatürden sentezlenmiştir.
Bulgular, önemli iklim farklılıklarına rağmen, Türkiye'deki birçok okulun bölgesel iklim ihtiyaçlarını yeterince karşılamayan benzer tasarımlara sahip olduğunu ve bunun hem öğrenme ortamı hem de öğrenci eşitliği için önemli sonuçlar doğurabileceğini, farklı bölgelerdeki öğrenciler arasındaki eşitsizlikleri daha da kötüleştirebileceğini, ortaya koymuştur. Çalışma, yalnızca mevcut iç mekan koşullarını iyileştirmek için değil, aynı zamanda iklim değişikliğinin oluşturduğu gelecekteki zorlukları ele almak, enerji verimliliğini artırmak ve en önemlisi tüm öğrenciler için eşit ve destekleyici öğrenme ortamları yaratmak için eğitim binalarına iklime duyarlı tasarım stratejilerinin dahil edilmesinin kritik ihtiyacını vurgulamaktadır. İklime duyarlı tasarımın öğrencilerin sağlığı, refahı ve bilişsel performansı üzerindeki etkisini değerlendirmek için daha fazla deneysel çalışma önerilmektedir.

Kaynakça

  • E. Firman and K. S. Dedy Sandiarsa, “The Effect of Learning Environment on Students’ Motivation in Learning,” Jurnal Ilmiah Mandala Education (JIME), vol. 10, no. 4, pp. 1046–1051, 2024, doi: 10.58258/jime.v9i1.7614/http.
  • J. E. Baluyos, A. C. Canastra, J. Dionio, H. Ilusorio, C. C. Jimenez, and G. R. Baluyos, “Influence of Environmental Conditions and The Students’ Health,” ARRUS Journal of Social Sciences and Humanities, vol. 4, no. 2, pp. 255–269, 2024, doi: 10.35877/soshum2507.
  • I. B. Chrzanowska, “Educational Space in Inclusive Education – Challenges in Working witha Diverse Group/Class,” Lubelski Rocznik Pedagogiczny, vol. 42, no. 4, pp. 59–75, 2024, doi: 10.17951/lrp.2023.42.4.59-75.
  • O. Ndimako, O. Babalola, and U. Ugah, “Students’ Wellness and Mindfulness in School Designs,” 2024. doi: 10.20944/preprints202408.1518.v1.
  • G. Akkose, C. Meral Akgul, and I. G. Dino, “Educational building retrofit under climate change and urban heat island effect,” Journal of Building Engineering, vol. 40, Aug. 2021, doi: 10.1016/j.jobe.2021.102294.
  • C. Lops, F. Serpilli, V. D’Alessandro, and S. Montelpare, “Climate Change and Building Renovation: The Impact of Historical, Current, and Future Climatic Files on a School in Central Italy,” Applied Sciences (Switzerland), vol. 14, no. 19, Oct. 2024, doi: 10.3390/app14199067.
  • C. Baglivo, “Dynamic evaluation of the effects of climate change on the energy renovation of a school in a mediterranean climate,” Sustainability (Switzerland), vol. 13, no. 11, Jun. 2021, doi: 10.3390/su13116375.
  • Y. Yaşar, A. Pehlevan, and E. Altıntaş, “İlköğretim dersliklerinde termal konfor araştırması,” in VIII. Ulusal Tesisat Mühendisliği Kongresi, 2007, pp. 199–208.
  • Y. Afacan, “Impact of Climate Zone and Orientation Angle on the Recurring Massing School Typologies in Turkey,” in Sustainability in Energy and Buildings 2021, vol. 263, J. R. Littlewood, R. J. Howlett, and L. C. Jain, Eds., Springer, 2022, pp. 11–27. [Online]. Available: http://www.springer.com/series/8767
  • J. M. Evans and S. Schiller, “Bridging the gap between climate and design: A bioclimatic design course for architectural students in Argentina,” Energy Build, vol. 15, no. 1–2, pp. 43–50, 1990.
  • E. Ş. Özen and Ö. Sümengen, “Türkiye’nin Farklı İklim Bölgelerinde ‘Binalarda Gün ışığı Kullanımı’ Standartı Çerçevesinde Değerlendirilmesi,” Fen Bilimleri Enstitüsü Dergisi, vol. 38, no. 2, pp. 292–313, 2022.
  • P. Gaonkar, A. Nakkeeran, J. Bapat, and D. Das, “Air quality and thermal comfort management for energy- efficient large public buildings,” Architecture, Structures and Construction, vol. 3, no. 1, pp. 25–40, Apr. 2023, doi: 10.1007/s44150-022-00059-4.
  • A. Chazarra Bernabé, B. Lorenzo Mariño, R. Romero Fresneda, and J. V. M. G. Moreno García, “Observed Changes of Köppen Climate Zones in Spain since 1951,” Espacio Tiempo y Forma. Serie VI, Geografía, no. 16, pp. 133–144, 2023, doi: 10.5944/etfvi.16.2023.38777.
  • Kuranlıoğlu, D. and İzmir Tunahan, G. “Türkiye’nin İklimsel Çeşitliliği Bağlamında Mimari Tasarımda Tek Tip Proje Yaklaşımının Değerlendirilmesi,” in 1. Bilsel International Midas Scientific Researches Congress, G. Yaldız, Ed., Eskişehir, Türkiye: Bilsel Publishing, Mar. 2025, pp. 206–219.
  • T. Glaves and M. Talpade, “An Exploration of The Types of Educational Environments Deemed Optimal for Learning by Students,” International Journal of Arts, Humanities & Social Science, vol. 5, no. 6, pp. 31–37, 2024, doi: 10.56734/ijahss.v5n6a5.
  • P. Cardellino and P. Woolner, “Designing for transformation – a case study of open learning spaces and educational change,” Pedagogy Culture and Society, vol. 28, no. 1, pp. 1–20, 2019.
  • L. Wang, “Relationships between Acoustics, Thermal, Indoor Air Quality, and Lighting Conditions on Student Achievement in K-12 Classrooms,” in INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Glasgow, Scotland: Institute of Noise Control Engineering, Feb. 2023, pp. 260–263.
  • T. Cătălina and T. Banu, “Impact of indoor environmental conditions on students intellectual performance,” Buletinul Institutului Politehnic Din Iaşi, vol. 64, no. 3, pp. 23–35, 2014.
  • R. E. C. Lucas, L. B. da Silva, E. L. de Souza, W. K. dos S. Leite, and J. M. N. da Silva, “Influence of environmental variables on students’ cognitive performance in indoor higher education environments,” Work, vol. 79, pp. 351–360, 2024, doi: 10.3233/wor-220055.
  • G. I. Earthman, “School Facility Conditions and Student Academic Achievement,” 2002. Accessed: Jan. 10, 2025. [Online]. Available: https://escholarship.org/uc/item/5sw56439
  • S. Gölemen, N. Taş, and M. Taş, “The changes of sustainable primary school buildings,” in Eco-Architecture VI: Harmonisation between Architecture and Nature, WIT Press, Jul. 2016, pp. 11–22. doi: 10.2495/arc160021.
  • J. Gu and F. Bal Koçyiğit, “Zero Consumption Monotype Education Buildings,” 2018. [Online]. Available: http://dergipark.gov.tr/gujs
  • F. N. Aksin and S. A. Selçuk, “Energy performance optimization of school buildings in different climates of Turkey,” Future Cities and Environment, vol. 7, no. 1, 2021, doi: 10.5334/fce.107.
  • H. D. Arslan, “Evaluation of a School Building in Turkey According to the Basic Sustainable Design Criteria,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, Sep. 2017. doi: 10.1088/1755-1315/83/1/012026.
  • T. Ashrafian, “Enhancing school buildings energy efficiency under climate change: A comprehensive analysis of energy, cost, and comfort factors,” Journal of Building Engineering, vol. 80, Dec. 2023, doi: 10.1016/j.jobe.2023.107969.
  • R. Afren, M. Benabbas, N. Zemmouri, and D. Djaghrouri, “Impact of the typology of school buildings on the internal thermal conditions, in a hot and dry climate,” in Energy Procedia, Elsevier Ltd, 2017, pp. 505– 510. doi: 10.1016/j.egypro.2017.07.305.
  • A. Kaihoul, E. Pitzali, and L. Sriti, “An Exploration of Climate-Responsive Design Strategies Employed by El-Miniawy Brothers in Southern Algeria,” Journal of Sustainable Architecture and Civil Engineering, vol. 35, no. 3, pp. 32–54, 2024, doi: 10.5755/j01.sace.35.3.36863.
  • D. Maučec, M. Premrov, and V. Ž. Leskovar, “Use of sensitivity analysis for a determination of dominant design parameters affecting energy efficiency of timber buildings in different climates,” Energy for Sustainable Development, vol. 63, pp. 86–102, Aug. 2021, doi: 10.1016/j.esd.2021.06.003.
  • H. Benharchache, F. Khaldi, and M. Hanfer, “The Effect of External Walls on Energy Performance of Algerian Rural Building in Different Climatic Zones,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 107, no. 2, pp. 171–190, Jul. 2023, doi: 10.37934/arfmts.107.2.171190.
  • N. Amani, “Simulation-based design: minimizing energy consumption in residential buildings through optimal thermal insulation,” World Journal of Engineering, 2024, doi: 10.1108/WJE-04-2024-0188.
  • H. Tawfeeq and A. M. A. Qaradaghi, “Optimising Window-to-Wall Ratio for Enhanced Energy Efficiency and Building Intelligence in Hot Summer Mediterranean Climates,” Sustainability, vol. 16, no. 17, p. 7342, Aug. 2024, doi: 10.3390/su16177342.
  • A. Kabanshi, G. Choonya, A. Ameen, W. Liu, and E. Mulenga, “Windows of Opportunities: Orientation, Sizing and PV-Shading of the Glazed Area to Reduce Cooling Energy Demand in Sub-Sahara Africa,” Energies (Basel), vol. 16, no. 9, May 2023, doi: 10.3390/en16093834.
  • S. Mirrahimi, N. Lukman, N. Ibrahim, and M. Surat, “Estimation Daylight to Find Simple Formulate Based on the Ratio of Window Area to Floor Area Rule of Thumb for Classroom in Malaysia,” Research Journal of Applied Sciences, Engineering and Technology, vol. 6, no. 5, pp. 931–935, 2013.
  • Y. V. Perez and I. G. Capeluto, “Climatic considerations in school building design in the hot-humid climate for reducing energy consumption,” Appl Energy, vol. 86, no. 3, pp. 340–348, 2009, doi: 10.1016/j.apenergy.2008.05.007.
  • P. Kr. Chaturvedi, N. Kumar, R. Lamba, and K. Mehta, “Multi-objective optimization of glazing and shading configurations for visual, thermal, and energy performance of cooling dominant climatic regions of India,” Sep. 27, 2024. doi: 10.21203/rs.3.rs-4983831/v1.
  • K. Wehrli et al., “Building design in a changing climate – Future Swiss reference years for building simulations,” Clim Serv, vol. 34, Apr. 2024, doi: 10.1016/j.cliser.2024.100448.
  • D. Satpal, A. Kalpana, and B. Kumar, “Optimizing Energy Efficiency to Design IGBC Green Schools in Composite Climate,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics, 2024. doi: 10.1088/1755-1315/1326/1/012045.
  • M. Salameh and B. Touqan, “Designing Climate-Adaptive Buildings: Impact of Courtyard Geometry on Microclimates in Hot, Dry Environments,” Civil Engineering Journal (Iran), vol. 10, no. 8, pp. 2698–2718, Aug. 2024, doi: 10.28991/CEJ-2024-010-08-017.
  • S. C. Asha and M. A. Blessing, “Environment Modifying in Inclusive Education,” Shanlax International Journal of Arts, Science and Humanities, vol. 11, no. Special Issue 1, pp. 5–9, 2023, doi: 10.34293/sijash.
  • T. Vinsela Jeev, “Causes and Effects of Climate Change in Education,” Shanlax International Journal of Arts, Science and Humanities, vol. 11, no. Special Issue 2, pp. 65–68, 2024, doi: 10.34293/sijash.
  • S. Venegas Marin, L. Schwarz, and S. Sabarwal, “Impacts of Extreme Weather Events on Education Outcomes: A Review of Evidence,” World Bank Res Obs, vol. 39, no. 2, pp. 177–226, 2024.
  • M. H. AL Hussaini, “Impact of Climate on Student Education and Their Future Development,” International Journal of Integrative Sciences, vol. 2, no. 4, pp. 525–534, May 2023, doi: 10.55927/ijis.v2i4.3951.
  • E. M. Preña and C. P. Labayo, “Policy responses to extreme heat and its impact on education: The Philippine experience,” Policy Futures in Education, 2024, doi: 10.1177/14782103241288276.
  • Y. K. Juan and Y. Chen, “The influence of indoor environmental factors on learning: An experiment combining physiological and psychological measurements,” Build Environ, vol. 221, Aug. 2022, doi: 10.1016/j.buildenv.2022.109299.
  • H. W. Brink, M. G. L. C. Loomans, M. P. Mobach, and H. S. M. Kort, “Classrooms’ indoor environmental conditions affecting the academic achievement of students and teachers in higher education: A systematic literature review,” Indoor Air, vol. 31, no. 2, pp. 405–425, Mar. 2021, doi: 10.1111/ina.12745.
  • A. Michael and C. Heracleous, “Assessment of natural lighting performance and visual comfort of educational architecture in Southern Europe: The case of typical educational school premises in Cyprus,” Energy Build, vol. 140, pp. 443–457, Apr. 2017, doi: 10.1016/j.enbuild.2016.12.087.
  • Z. S. Zomorodian, M. Tahsildoost, and M. Hafezi, “Thermal comfort in educational buildings: A review article,” Jun. 01, 2016, Elsevier Ltd. doi: 10.1016/j.rser.2016.01.033.
  • Y. P. Villarreal Arroyo, R. Peñabaena-Niebles, and C. Berdugo Correa, “Influence of environmental conditions on students’ learning processes: A systematic review,” Mar. 01, 2023, Elsevier Ltd. doi: 10.1016/j.buildenv.2023.110051.
  • P. Sarıcıoğlu and İ. Ayçam, “A framework for the evaluation of buildings in the context of climate change for Turkey,” GRID - Architecture, Planning and Design Journal, Jul. 2021, doi: 10.37246/grid.934644.
  • Y. Yildiz and M. Kocyigit, “Energy consumption analysis of education buildings: The case study of balikesir university,” Gazi University Journal of Science, vol. 34, no. 3, pp. 665–677, 2021, doi: 10.35378/gujs.722746.
  • E. Bölük, O. Eskioğlu, Y. Çalık, and S. Yağan, “Köppen İklim Sınıflandırmasına Göre Türkiye İklimi,” Jan. 2023.
  • Meteoroloji Genel Müdürlüğü, “İllere Ait Mevsim Normalleri (1991-2020),” https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H. Accessed: Nov. 16, 2025. [Online]. Available: https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H
  • Weather Spark, “The Weather Year Round Anywhere on Earth,” https://weatherspark.com/. Accessed: Nov. 14, 2024. [Online]. Available: https://weatherspark.com/
  • Z. Qin, “Credibilistic Mean-Absolute Deviation Model,” in Uncertainty and Operations Research Uncertain Portfolio Optimization, Beijing, China: Springer, 2016, ch. 3, pp. 53–67. [Online]. Available: http://www.springer.com/series/11709
  • Milli Eğitim Bakanlığı, “Eğitim Yapıları Asgari Tasarım Standartları Kılavuzu,” 2015.
  • U. Atmaca, “TS 825 Binalarda Isı Yalıtım Kuralları Standardındaki Güncellemeler,” Tesisat Mühendisliği, no. 154, pp. 21–35, 2016.
  • Vstarenergy, “Building Thermal Rating Assessors,” Vstarenergy. Accessed: Dec. 20, 2024. [Online]. Available: https://vstarenergy.com.au/2024/08/19/window-to-wall- ratio/#:~:text=Ideal%20WWR%3A%2020%2D40%25,enhance%20energy%20efficiency%20and%20co mfort
  • E. Bölük, O. Eskioğlu, Y. Çalık, and S. Yağan, “Köppen İklim Sınıflandırmasına Göre Türkiye İklimi,” Jan. 2023.
  • A. Caporale, F. Gabriele Galizia, L. Botti, and C. Mora, “Thermal comfort prediction of aged industrial workers based on occupants’ basal metabolic rate,” in Social and Occupational Ergonomics, AHFE International, 2022. doi: 10.54941/ahfe1002666.
  • U. Unver, E. Adigüzel, E. Adıgüzel, and S. Çivi, “Türkiye’deki İklim Bölgelerine Göre Binalarda Isı Yalıtım Uygulamaları Application of Thermal Insulation in Buildings by Climate Zones in Turkey,” İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, vol. 1, no. 2, pp. 171–187, 2020, [Online]. Available: https://www.researchgate.net/publication/348371986
  • T. K. P. Nguyen and E. V. Korkina, “Connectivity of the Window to Floor Area Ratio and the Daylighting Assessment Criteria,” Iranian Journal of Science and Technology - Transactions of Civil Engineering, vol. 45, no. 3, pp. 2035–2045, Sep. 2021, doi: 10.1007/s40996-021-00681-0.
  • M. M. Hassieb, A. Ragab, and A. F. Mohamed, “Quantifying the Influence of Window-to-Wall Ratio (WWR) on Indoor Air Quality and Thermal Comfort: Classroom Study in Hot Arid Climates,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics, 2024. doi: 10.1088/1755- 1315/1396/1/012025.
  • E. Garcia-Nevado, B. Beckers, H. C. Roura, and I. Crespo, “Façade design and energy demand: fenestration indexes from an urban approach,” 2017.
  • S. A. Olaniyan, I. I. Adebisi, and O. O. . Onigbogi, “Between Fancy and Functionality: Comparative Thermal Performance Analyses of Selected External Building Shading Elements in Tropical Building Design,” LAUTECH Journal of Civil and Environmental Studies, vol. 11, no. 1, Sep. 2023, doi: 10.36108/laujoces/3202.11.0140.
  • F. Işıker and M. F. Bölük, “Okul tasarımlarında mekansal olasılıklar,” in Uluslararası Mimarlık ve Tasarım Kongresi, İstanbul Bilim ve Akademisyenler Derneği, 2016, pp. 142–152.
  • K. Çelik, “Eğitim yapıları tasarım kılavuzları bağlamında dersliklerin görsel konfor ve enerji kullanımı açısından değerlendirilmesi,” Journal of International Social Research, vol. 12, no. 63, pp. 441–447, Apr. 2019, doi: 10.17719/jisr.2019.3241.
  • C. Demir Yıldız and B. Dönmez, “Anadolu Liseleri Tip Projelerinin Milli Eğitim Bakanlığı Eğitim Yapıları Asgari Tasarım Standartları Açısından Değerlendirilmesi,” in Eğitim Yönetimi Araştırmaları, 1st ed., S. Akbaba Altun, D. Örücü, K. Beycioğlu, Y. Kondakçı, and S. Koşar, Eds., Pegem Akademi, 2017, pp. 204–221. doi: 10.14527/9786052411551.
  • G. Özer, P. Çulun, and F. Kürüm Varolgüneş, “Assessment and improvement of thermal comfort conditions in educational buildings: an example of a secondary school,” Türk Doğa ve Fen Dergisi, vol. 13, no. 4, pp. 91–106, Dec. 2024, doi: 10.46810/tdfd.1525408.
  • S. Sadrizadeh et al., “Indoor air quality and health in schools: A critical review for developing the roadmap for the future school environment,” Journal of Building Engineering, vol. 57, Oct. 2022, doi: 10.1016/j.jobe.2022.104908.
  • A. Baba, I. Shahrour, and M. Baba, “Indoor Environmental Quality for Comfort Learning Environments: Case Study of Palestinian School Buildings,” Buildings, vol. 14, no. 5, May 2024, doi: 10.3390/buildings14051296.
  • S. Okçu, E. Ryherd, and C. Bayer, “The role of physical environment on student health and education in green schools,” Rev Environ Health, vol. 26, no. 3, pp. 169–179, 2011.
  • S. Aghamohammadiha and N. Dehghan, “Optimum Geometry of Double-skin Self-Shading Facade of Classrooms with the Aim of Creating Energy Saving and Visual Comfort in Isfahan Province, Iran,” Journal of Daylighting, vol. 11, no. 2, pp. 372–389, Nov. 2024, doi: 10.15627/jd.2024.25.
  • P. Singh, “Indoor Environmental Quality & Student Health and Performance: A Conceptual Review,” 2013. [Online]. Available: http://www.ijmra.us
  • S. Mathiarasan and A. Hüls, “Impact of environmental injustice on children’s health—interaction between air pollution and socioeconomic status,” Jan. 02, 2021, MDPI AG. doi: 10.3390/ijerph18020795.
  • B. Lala and A. Hagishima, “Impact of Escalating Heat Waves on Students’ Well-Being and Overall Health: A Survey of Primary School Teachers,” Climate, vol. 11, no. 6, Jun. 2023, doi: 10.3390/cli11060126.
  • P. Alamdari, “Primary School Buildings Renovation in Cold Climates: Optimizing Window Size and Opening for Thermal Comfort, Indoor Air Quality, and Energy Performance,” 2022. [Online]. Available: https://www.researchgate.net/publication/365747113
  • A. Altassan, “Sustainable Integration of Solar Energy, Behavior Change, and Recycling Practices in Educational Institutions: A Holistic Framework for Environmental Conservation and Quality Education,” Sustainability (Switzerland), vol. 15, no. 20, Oct. 2023, doi: 10.3390/su152015157.
  • J. Kim, H. Naganathan, S. Moon, and D. Jang, “Optimizing Comfort and Sustainability: The Impact of Passive Cooling and Eco-Friendly Materials on Indoor Temperature Reduction—A Case Study,” Buildings, vol. 14, no. 10, Oct. 2024, doi: 10.3390/buildings14103218.
  • G. Lamberti, G. Salvadori, F. Leccese, F. Fantozzi, and P. M. Bluyssen, “Advancement on thermal comfort in educational buildings: Current issues and way forward,” Sustainability (Switzerland), vol. 13, no. 18, Sep. 2021, doi: 10.3390/su131810315.
  • S. Jaouaf, B. Bensaad, and M. Habib, “Passive strategies for energy-efficient educational facilities: Insights from a mediterranean primary school,” Energy Reports, vol. 11, pp. 3653–3683, Jun. 2024, doi: 10.1016/j.egyr.2024.03.040.
Toplam 80 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mimari Mühendislik, Yapı Malzemeleri
Bölüm Makaleler
Yazarlar

Dilan Kuranlıoğlu 0009-0003-8886-5024

Gizem Izmir Tunahan 0000-0003-1473-9351

Yayımlanma Tarihi 30 Nisan 2025
Gönderilme Tarihi 20 Şubat 2025
Kabul Tarihi 19 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 41 Sayı: 1

Kaynak Göster

APA Kuranlıoğlu, D., & Izmir Tunahan, G. (2025). Designing Climate-Responsive Learning Environments: Rethinking Educational Buildings Across Türkiye’s Diverse Climatic Zones. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 41(1), 282-317.
AMA Kuranlıoğlu D, Izmir Tunahan G. Designing Climate-Responsive Learning Environments: Rethinking Educational Buildings Across Türkiye’s Diverse Climatic Zones. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Nisan 2025;41(1):282-317.
Chicago Kuranlıoğlu, Dilan, ve Gizem Izmir Tunahan. “Designing Climate-Responsive Learning Environments: Rethinking Educational Buildings Across Türkiye’s Diverse Climatic Zones”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 41, sy. 1 (Nisan 2025): 282-317.
EndNote Kuranlıoğlu D, Izmir Tunahan G (01 Nisan 2025) Designing Climate-Responsive Learning Environments: Rethinking Educational Buildings Across Türkiye’s Diverse Climatic Zones. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 41 1 282–317.
IEEE D. Kuranlıoğlu ve G. Izmir Tunahan, “Designing Climate-Responsive Learning Environments: Rethinking Educational Buildings Across Türkiye’s Diverse Climatic Zones”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 41, sy. 1, ss. 282–317, 2025.
ISNAD Kuranlıoğlu, Dilan - Izmir Tunahan, Gizem. “Designing Climate-Responsive Learning Environments: Rethinking Educational Buildings Across Türkiye’s Diverse Climatic Zones”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 41/1 (Nisan 2025), 282-317.
JAMA Kuranlıoğlu D, Izmir Tunahan G. Designing Climate-Responsive Learning Environments: Rethinking Educational Buildings Across Türkiye’s Diverse Climatic Zones. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2025;41:282–317.
MLA Kuranlıoğlu, Dilan ve Gizem Izmir Tunahan. “Designing Climate-Responsive Learning Environments: Rethinking Educational Buildings Across Türkiye’s Diverse Climatic Zones”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 41, sy. 1, 2025, ss. 282-17.
Vancouver Kuranlıoğlu D, Izmir Tunahan G. Designing Climate-Responsive Learning Environments: Rethinking Educational Buildings Across Türkiye’s Diverse Climatic Zones. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2025;41(1):282-317.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.