BibTex RIS Kaynak Göster

Bulanık Vardiya Çizelgeleme Problemleri İçin Tamsayılı Programlama Modeli

Yıl 2008, Sayı: 30, 211 - 227, 01.07.2008

Öz

Gerçek hayatta karşılaşılan pek çok problemde karar parametreleri, eksik ya da elde edilememiş bilgiler nedeni ile kesin olarak bilinemeyebilir. Bu tür problemleri çözebilmek için de bulanık matematiksel programlama modellerine ihtiyaç duyulur. Vardiya çizelgeleme problemlerinde de ihtiyaç duyulan işgücü sayılarının her zaman kesin olarak bilinmesi mümkün olmayabilir. Bu çalışmada da böyle problemleri çözebilmek için Aykin’in (1996) vardiya çizelgeleme modelini bulanıklaştırdık. Bulanık modeli bir örnek problem üzerinde uyguladık ve elde ettiğimiz çözümü yorumladık

Kaynakça

  • AYKİN, Turgut; (1996), “Optimal Shift Scheduling with Multiple Break Windows”, Management Science , 42(4), ss.591-602.
  • BECHTOLD, Stephen.E. ve Larry.W. JACOBS; (1990), “Implicit Modeling of Flexible Break Assignments in Optimal Shift Scheduling”, Management Science, 36(11), ss.1339-1351.
  • BELLMAN, Richard E. ve Lotfi A.ZADEH; (1970), “Decision-Making in Fuzzy Enviroment”, Management Science , 17(4), ss. B-141-164. BESKESE, Ahmet; Cengiz KAHRAMAN ve Zahir IRAN; (2004),“Quantification Of Flexibility In Advanced Manufacturing Systems Using Fuzzy Concept”, Int. J. Production Economics, 89, ss. 45-56.
  • CHEN, Shih-Pin; (2006), “ A Mathematical Programming Approach To The Machine Interference Problem With Fuzzy Parameters” Applied Mathematics And Computation, 174, ss.374-387.
  • DANTZİG, GeorgeB.; (1954), “ A Comment On Edie’s Traffic Delays At Tool Booths” Operations Research, 2(3), ss.339-341.
  • DELGADO, Miguel; Jose Luis VERDEGAY ve Maria Amparo VILA; (1989), “A General Model For Fuzzy Linear Programming”, Fuzzy Sets and Systems, 29, ss. 21-29.
  • EKEL, P Ya; M.R. SILVA; F. SCHUFFNER NETO ve R.M. PALHARES; (2006), “Fuzzy Preference Modeling and Its Application to Multiobjective Decision Making”, Computer and Mathematics with Applications, 52, ss. 179-196.
  • GUPTA, Pankaj; Mukesh Kumar MEHLAWAT ve Anand SAXENA; (2008), “Asset Portfolio Optimization Using Fuzzy Mathematical Programming ”, Information Sciences, 178, ss. 1734-1755.
  • ISLAM, Sahidul ve Tapan Kumar ROY; (2006), “A New Fuzzy Multi- Objective Programming : Entropy Based Geometric Programming And Its Application Of Transportation Problems”, European Journal of Operational Research, 173, ss.387-404.
  • KATAGIRI, Hideki ve Hiroaki ISHII; (2000), “Some Inventory Problems With Fuzzy Shortage Cost”, Fuzzy Sets And Systems, 111, ss.87-97.
  • KEITH, Elbridge G.; (1979), “Operator Scheduling”, AIIE Transactions, 1(11), ss.37-41.
  • LEUNG, Yee; (1988),“Interregional Equlibrium and Fuzzy Linear Programming ”, Environment and Planning , A 20.25-40, ss.219-230.
  • LUHANDJULA, M.K.; (2006),“Fuzzy Stochastic Linear Programming: Survey and Future Research Directions”, European Journal of Operational Research , 174, ss.1353-1367.
  • MAHAPATRA, G.S. ve T.K. ROY; (2006),“Fuzzy Multi-Objective Mathematical Programming On Reliability Optimization Model”, Applied Mathematics and Computation , 174, ss.643-659.
  • MULA, J.; R. POLER ve J.P. GARCIA; (2006),“MRP With Flexible Constraints: A Fuzzy Mathematical Programming Approach”, Fuzzy Sets And Systems, 157, ss.74-97.
  • SAKAWA, Masatoshi; Ichiro NISHIZAKI ve Yoshio VEMURA; (2001),“Interactive Fuzzy Programming For Two-Level Linear And Linear Fractional Production And Assignment Problems: A case Study”, European Journal Of Operational Research, 135, ss.142-157.
  • SLOWINSKI, Roman; (1986), “A Multicriteria Fuzzy Linear Programming Method For Water Supply System Development Planning ”, Fuzzy Sets and Systems, 19, ss.217-237.
  • TANAKA, Hideo.; T. OKUDA ve Kiyoji. ASAI; (1974), “On Fuzzy Mathematical Programming”, J.Cybernetics, 3, ss.37-46.
  • THOMPSON, Gary M.; (1996), “Optimal Scheduling of Shifts and Breaks Using Employees Having Limited Time-Availability”, International Journal of Service Industry Management, 7(1), ss.56-73.
  • THOMPSON, Gary.M.; (1999) “Labor Scheduling, Part 3 (Developing A Workforce Schedule)”,Cornell Hotel and Restaurant Administration Quarterly, ss.86-96.
  • VERDEGAY, Jose Luis; (1982)“Fuzzy Mathematical Programming in:M.Grupta and E.Sanchez”, Fuzzy Information and Decision Processes, ss.231-237.
  • WANG, Reay-Chen ve Tien-Fu LIANG; (2004), “Aplications of Fuzzy Multi Objective Linear Programming To Aggregate Production Planning”, Computers&Industrial Engineering, 46, ss.17-41.
  • ZIMMERMANN, Hyman J.; (1985), “Aplications of Fuzzy Set Theory to
  • Mathematical Programming”, Information Sciences, 36, ss.29- 58.
Yıl 2008, Sayı: 30, 211 - 227, 01.07.2008

Öz

Kaynakça

  • AYKİN, Turgut; (1996), “Optimal Shift Scheduling with Multiple Break Windows”, Management Science , 42(4), ss.591-602.
  • BECHTOLD, Stephen.E. ve Larry.W. JACOBS; (1990), “Implicit Modeling of Flexible Break Assignments in Optimal Shift Scheduling”, Management Science, 36(11), ss.1339-1351.
  • BELLMAN, Richard E. ve Lotfi A.ZADEH; (1970), “Decision-Making in Fuzzy Enviroment”, Management Science , 17(4), ss. B-141-164. BESKESE, Ahmet; Cengiz KAHRAMAN ve Zahir IRAN; (2004),“Quantification Of Flexibility In Advanced Manufacturing Systems Using Fuzzy Concept”, Int. J. Production Economics, 89, ss. 45-56.
  • CHEN, Shih-Pin; (2006), “ A Mathematical Programming Approach To The Machine Interference Problem With Fuzzy Parameters” Applied Mathematics And Computation, 174, ss.374-387.
  • DANTZİG, GeorgeB.; (1954), “ A Comment On Edie’s Traffic Delays At Tool Booths” Operations Research, 2(3), ss.339-341.
  • DELGADO, Miguel; Jose Luis VERDEGAY ve Maria Amparo VILA; (1989), “A General Model For Fuzzy Linear Programming”, Fuzzy Sets and Systems, 29, ss. 21-29.
  • EKEL, P Ya; M.R. SILVA; F. SCHUFFNER NETO ve R.M. PALHARES; (2006), “Fuzzy Preference Modeling and Its Application to Multiobjective Decision Making”, Computer and Mathematics with Applications, 52, ss. 179-196.
  • GUPTA, Pankaj; Mukesh Kumar MEHLAWAT ve Anand SAXENA; (2008), “Asset Portfolio Optimization Using Fuzzy Mathematical Programming ”, Information Sciences, 178, ss. 1734-1755.
  • ISLAM, Sahidul ve Tapan Kumar ROY; (2006), “A New Fuzzy Multi- Objective Programming : Entropy Based Geometric Programming And Its Application Of Transportation Problems”, European Journal of Operational Research, 173, ss.387-404.
  • KATAGIRI, Hideki ve Hiroaki ISHII; (2000), “Some Inventory Problems With Fuzzy Shortage Cost”, Fuzzy Sets And Systems, 111, ss.87-97.
  • KEITH, Elbridge G.; (1979), “Operator Scheduling”, AIIE Transactions, 1(11), ss.37-41.
  • LEUNG, Yee; (1988),“Interregional Equlibrium and Fuzzy Linear Programming ”, Environment and Planning , A 20.25-40, ss.219-230.
  • LUHANDJULA, M.K.; (2006),“Fuzzy Stochastic Linear Programming: Survey and Future Research Directions”, European Journal of Operational Research , 174, ss.1353-1367.
  • MAHAPATRA, G.S. ve T.K. ROY; (2006),“Fuzzy Multi-Objective Mathematical Programming On Reliability Optimization Model”, Applied Mathematics and Computation , 174, ss.643-659.
  • MULA, J.; R. POLER ve J.P. GARCIA; (2006),“MRP With Flexible Constraints: A Fuzzy Mathematical Programming Approach”, Fuzzy Sets And Systems, 157, ss.74-97.
  • SAKAWA, Masatoshi; Ichiro NISHIZAKI ve Yoshio VEMURA; (2001),“Interactive Fuzzy Programming For Two-Level Linear And Linear Fractional Production And Assignment Problems: A case Study”, European Journal Of Operational Research, 135, ss.142-157.
  • SLOWINSKI, Roman; (1986), “A Multicriteria Fuzzy Linear Programming Method For Water Supply System Development Planning ”, Fuzzy Sets and Systems, 19, ss.217-237.
  • TANAKA, Hideo.; T. OKUDA ve Kiyoji. ASAI; (1974), “On Fuzzy Mathematical Programming”, J.Cybernetics, 3, ss.37-46.
  • THOMPSON, Gary M.; (1996), “Optimal Scheduling of Shifts and Breaks Using Employees Having Limited Time-Availability”, International Journal of Service Industry Management, 7(1), ss.56-73.
  • THOMPSON, Gary.M.; (1999) “Labor Scheduling, Part 3 (Developing A Workforce Schedule)”,Cornell Hotel and Restaurant Administration Quarterly, ss.86-96.
  • VERDEGAY, Jose Luis; (1982)“Fuzzy Mathematical Programming in:M.Grupta and E.Sanchez”, Fuzzy Information and Decision Processes, ss.231-237.
  • WANG, Reay-Chen ve Tien-Fu LIANG; (2004), “Aplications of Fuzzy Multi Objective Linear Programming To Aggregate Production Planning”, Computers&Industrial Engineering, 46, ss.17-41.
  • ZIMMERMANN, Hyman J.; (1985), “Aplications of Fuzzy Set Theory to
  • Mathematical Programming”, Information Sciences, 36, ss.29- 58.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Araş. Gör. Dr. Banu Sungur Bu kişi benim

Yayımlanma Tarihi 1 Temmuz 2008
Yayımlandığı Sayı Yıl 2008 Sayı: 30

Kaynak Göster

APA Sungur, A. . G. . D. . B. (2008). Bulanık Vardiya Çizelgeleme Problemleri İçin Tamsayılı Programlama Modeli. Erciyes Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi(30), 211-227.

TRDizinlogo_live-e1586763957746.pnggoogle-scholar.jpgopen-access-logo-1024x416.pngdownload.jpgqMV-nsBH.pngDRJI-500x190.jpgsobiad_2_0.pnglogo.pnglogo.png  arastirmax_logo.gif17442EBSCOhost_Flat.png?itok=f5l7Nsj83734-logo-erih-plus.jpgproquest-300x114.jpg

ERÜ İktisadi ve İdari Bilimler Fakültesi Dergisi 2021 | iibfdergi@erciyes.edu.tr

Bu eser Creative Commons Atıf-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. 

 88x31.png