Araştırma Makalesi
BibTex RIS Kaynak Göster

How Do Different Types of Physical Activity Affect Cardiac Functions in Children?

Yıl 2021, Cilt: 6 Sayı: 1, 29 - 41, 26.06.2021

Öz

Background: This study aims to investigate how different types of regular physical activity affect cardiac functions in school children.

Methods: This is a cross-sectional review of 15 children who are not engaged with any regular physical activity (controls) and 60 athletes who swim (n=15), play basketball (n=15), volleyball (n=15), and tennis (n=15) regularly.

Results: The children who are not engaged with any sports, the children who swim, and the children who play basketball, volleyball and tennis are statistically similar with respect to age, sex, height, weight and body mass index (p>0.05 for all). When compared to the controls and other athletes, the children who swim have significantly higher left ventricle diastolic mass, higher left ventricle posterior wall systolic thickness, lower mitral A wave, higher mitral annular plane systolic excursion and higher mitral E/A ratio (p=0.006, p=0.035, p=0.030, p=0.025 and p=0.043 respectively). The children who swim have significantly lower interventricular septum E and A waves and significantly longer left ventricle IVRT than the controls and other athletes (p=0.001, p=0.040 and p=0.004 respectively). When compared with the controls and other athletes, the children who swim have significantly lower p-wave dispersion and QT dispersion values (p=0.038 and p=0.035 respectively). The children who swim have significantly higher total power and SDNN values than the controls and other athletes (p=0.046 and p=0.026 respectively).

Conclusion: Swimming contributes to the growth of cardiac muscles, help improvimg the cardiac conduction system and enhance parasympathetic innervation of the heart in children.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Bazett, HC. (1920). The time relations of the blood-pressure changes after excision of the adrenal glands, with some observations on blood volume changes. J Physiol, 53(5), 320-39.
  • Besnier, F., Labrunée, M., Pathak, A., Pavy-Le Traon, A., Galès, C., Sénard, JM., et al. (2017). Exercise training-induced modification in autonomic nervous system: An update for cardiac patients. Ann Phys Rehabil Med, 60(1), 27-35.
  • Brateanu, A. (2015). Heart rate variability after myocardial infarction: what we know and what we still need to find out. Curr Med Res Opin, 31(10), 1855-60.
  • Coe, DP. (2014). Exercise prescription in special populations: women, pregnancy, children and older adults. In: Swain DP, editor. ACSM’s resource manual for exercise testing and prescription. 7th ed. China: Wolters Kluver Health-Lippincott Wiliams & Wilkins; p. 569.
  • Cygankiewicz, I. and Zareba, W. (2013). Heart rate variability. Handb Clin Neurol, 117, 379-93.
  • Doyen, B., Matelot, D., Carré, F. (2019). Asymptomatic bradycardia amongst endurance athletes. Phys Sportsmed, 47(3), 249-52.
  • Felber Dietrich, D., Ackermann-Liebrich, U., Schindler, C., Barthelemy, JC., Brandli, O., Gold, DR., et al. (2008). Effect of physical activity on heart rate variability in normal weight, overweight and obese subjects: results from the SAPALDIA study. Eur J Appl Physiol, 104(3), 557–65.
  • Fox, K. R. (2011). Department of Health. Start active, stay active: report on physical activity in the UK: a report on physical activity from the four home countried Chief Medical Officers. London.
  • Henje Blom, E., Olsson, EM., Serlachius, E., Ericson, M., Ingvar, M. (2009). Heart rate variability is related to self-reported physical activity in a healthy adolescent population. Eur J Appl Physiol, 106(6), 877–83.
  • Islam, SKMA., Kim, D., Lee, YS., Moon, SS. (2018). Association between diabetic peripheral neuropathy and heart rate variability in subjects with type 2 diabetes. Diabetes Res Clin Pract, 140, 18-26.
  • Izci, F., Hocagil, H., Izci, S., Izci, V., Koc, MI., Acar, RD. (2015). P-wave and QT dispersion in patients with conversion disorder. Ther Clin Risk Manag, 26(11), 475-80.
  • Kaikkonen, KM., Korpelainen, RI., Tulppo, MP., Kaikkonen, HS., Vanhala, ML., Kallio, MA., et al. (2014). Physical activity and aerobic fitness are positively associated with heart rate variability in obese adults. J Phys Act Health, 11(8), 1614–21.
  • Kuryanova, EV., Tryasuchev, AV., Stupin, VO., Teplyi, DL. (2017). Effect of stimulation of neurotransmitter systems on heart rate variability and β-adrenergic responsiveness of erythrocytes in outbred rats. Bull Exp Biol Med, 163(1), 31-6.
  • Kuryanova, EV., Tryasuchev, AV., Stupin, VO., Teplyi, DL. (2018). Effect of atropine on adrenergic responsiveness of erythrocyte and heart rhythm variability in outbred rats with stimulation of the central neurotransmitter systems. Bull Exp Biol Med, 165(5), 597-601.
  • Larosa, C., Infusino, F., Sgueglia, GA., Aurigemma, C., Sestito, A., Lombardo, A, et al. (2005). Effect of primary percutaneous coronary intervention versus thrombolysis on ventricular arrhythmias and heart rate variability in acute myocardial infarction. Ital Heart J, 6(8), 629-33.
  • Lavie, CJ., Church, TS., Milani, RV., Earnest, CP. (2011). Impact of physical activity, cardiorespiratory fitness, and exercise training on markers of inflammation. J Cardiopulm Rehabil Prev, 31(3), 137–45.
  • Lazar, JM., Khanna, N., Chesler, R., Salciccioli, L. (2013). Swimming and the heart. Int J Cardiol, 168(1), 19–26.
  • Lin, YY., Lu, WA., Hsieh, YC., Chang, HH., Shih, CC., Jeng, MJ, et al. (2017). Effect of position on the residual heart rate variability in patients after orthotopic heart transplantation. J Chin Med Assoc, 80(2), 63-71.
  • Lucini, D., de Giacomi, G., Tosi, F., Malacarne, M., Respizzi, S., Pagani, M. (2013). Altered cardiovascular autonomic regulation in overweight children engaged in regular physical activity. Heart, 99(6), 376–81.
  • Maged, AM., Abbassy, AH., Sakr, HRS., Elsawah, H., Wagih, H., Ogila, AI. et al. (2018). Effect of swimming exercise on premenstrual syndrome. Arch Gynecol Obstet, 297(4), 951-9.
  • Moraes, IAP., Silva, TD., Massetti,T., Menezes, LDC., Ribeiro, VF., Tropiano, LMC., et al. (2019). Fractal correlations and linear analyses of heart rate variability in healthy young people with different levels of physical activity. Cardiol Young, 29(10), 1236-42.
  • Medeiros, A., Oliveira, EM., Gianolla, R., Casarini, DE., Negrão, CE., Brum, PC. (2004). Swimming training increases cardiac vagal activity and induces cardiac hypertrophy in rats. Braz J Med Biol Res, 37(12), 1909–17.
  • Nagai, N. and Moritani, T. (2004). Effect of physical activity on autonomic nervous system function in lean and obese children. Int J Obes Relat Metab Disord, 28(1), 27–33.
  • Nagueh, SF., Smiseth, OA., Appleton, CP., Byrd, BF., Dokainish, H., Edvardsen, T., et al; (2016). Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging, 17(12), 1321-60.
  • Prodel, E., Peçanha, T., Silva, LPD., Paula, RB., Martinez, DG., Lima, JRP., et al. (2017). Different times of day do not change heart rate variability recovery after light exercise in sedentary subjects: 24 hours Holter monitoring. Chronobiol Int, 34(10), 1354-65.
  • Nualnim, N., Parkhurst, K., Dhindsa, M., Tarumi, T., Vavrek, J., Tanaka, H. (2012). Effects of swimming training on blood pressure and vascular function in adults >50 years of age. Am J Cardiol, 109(7), 1005–10.
  • Plews, DJ., Laursen, PB., Stanley, J., Kilding, AE., Buchheit, M. (2013). Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med, 43(9), 773–81.
  • Sandercock, GRH., Bromley, PD., Brodie, DA. (2005). Effects of exercise on heart rate variability: inferences from meta-analysis. Med Sci Sports Exerc, 37, 433–9.
  • Shaffer, F. and Ginsberg, JP. (2017). An overview of heart rate variability metrics and norms. Front Public Health, 5: 258.
  • Sharma, VK., Subramanian, SK., Arunachalam, V., Rajendran, R. (2015). Heart rate variability in adolescents—normative data stratified by sex and physical activity. J Clin Diagn Res, 9(10), 08–13. Sen, J. and McGill, D. (2018). Fractal analysis of heart rate variability as a predictor of mortality: A systematic review and meta-analysis. Chaos 28(7), 072101.
  • Sharma, VK., Subramanian, SK., Radhakrishnan, K., Rajendran, R., Ravindran, BS., Arunachalam, V. (2017). Comparison of structured and unstructured physical activity training on predicted vo2max and heart rate variability in adolescents - A Randomized Control Trial. J Basic Clin Physiol Pharmacol, 28(3), 225-38.
  • Sessa, F., Anna, V., Messina, G., Cibelli, G., Monda, V., Marsala, G, et al. (2018). Heart rate variability as predictive factor for sudden cardiac death. Aging (Albany NY), 10(2), 166-77.
  • Tanaka, H. (2009). Swimming exercise: impact of aquatic exercise on cardiovascular health. Sports Med, 39(5), 377–87.
  • Tian, J., Yu, T., Xu, Y., Pu, S., Lv, Y., Zhang, X. et al. (2018). Swimming training reduces neuroma pain by regulating neurotrophins. Med Sci Sports Exerc, 50(1), 54-61.
  • World Health Organization. (2011). Global strategy on diet, physical activity and health. Information sheet: global recommendations on physical activity for health 5–17 years old.
  • Xhyheri, B., Manfrini, O., Mazzolini, M., Pizzi, C., Bugiardini, R. (2012). Heart rate variability today. Prog Cardiovasc Dis, 55(3), 321-31.

How Do Different Types of Physical Activity Affect Cardiac Functions in Children?

Yıl 2021, Cilt: 6 Sayı: 1, 29 - 41, 26.06.2021

Öz

Amaç: Bu çalışma, okul çağı çocuklarında farklı türdeki düzenli fiziksel aktivitelerin kardiyak fonksiyonları nasıl etkilediğini araştırmayı amaçlamaktadır.

Yöntem: Çalışmada, düzenli fiziksel aktivite yapmayan (n = 15), yüzme (n = 15), basketbol (n = 15), voleybol (n = 15) ve tenis (n = 15) spor dallarında toplam 60 sporcu kesitsel olarak incelenmiştir.

Bulgular: Gruplar arasında yaş, cinsiyet, boy, kilo ve vücut kitle indeksi açısından istatistiksel olarak bir anlamlı bir farklılık tespit edilmemiştir. Düzenli fiziksel aktivite yapmayanlar ile yüzme grubu karşılaştırıldığında sol ventrikül diyastolik kitlesi, sol ventrikül arka duvar sistolik kalınlığı, mitral anüler düzlem sistolik ekskürsiyonu ve mitral E / A oranının arttığı, mitral A dalgasının ise azaldığı saptanmıştır. Yüzme grubunda interventriküler septum E ve A dalgaları, diğer gruplara göre anlamlı derecede daha düşük; sol ventrikül IVRT oranları daha uzun bulunmuştur. Düzenli fiziksel aktivite yapmayanlar ile diğer gruplar karşılaştırıldığında, yüzme grubunun p-dalga dispersiyonu ve QT dispersiyon değerleri anlamlı olarak daha düşük olarak tespit edilmiştir. Yüzme grubunda toplam güç ve SDNN değerlerinin diğer gruplara göre anlamlı olarak daha yüksek olduğu saptanmıştır.

Sonuç: Yüzme sporunun çocuklarda kalp kaslarının büyümesine katkıda bulunduğu, kalp iletim sistemini potansiyelize ettiği ve kalbin parasempatik innervasyonunu artırdığı görülmüştür

Proje Numarası

-

Kaynakça

  • Bazett, HC. (1920). The time relations of the blood-pressure changes after excision of the adrenal glands, with some observations on blood volume changes. J Physiol, 53(5), 320-39.
  • Besnier, F., Labrunée, M., Pathak, A., Pavy-Le Traon, A., Galès, C., Sénard, JM., et al. (2017). Exercise training-induced modification in autonomic nervous system: An update for cardiac patients. Ann Phys Rehabil Med, 60(1), 27-35.
  • Brateanu, A. (2015). Heart rate variability after myocardial infarction: what we know and what we still need to find out. Curr Med Res Opin, 31(10), 1855-60.
  • Coe, DP. (2014). Exercise prescription in special populations: women, pregnancy, children and older adults. In: Swain DP, editor. ACSM’s resource manual for exercise testing and prescription. 7th ed. China: Wolters Kluver Health-Lippincott Wiliams & Wilkins; p. 569.
  • Cygankiewicz, I. and Zareba, W. (2013). Heart rate variability. Handb Clin Neurol, 117, 379-93.
  • Doyen, B., Matelot, D., Carré, F. (2019). Asymptomatic bradycardia amongst endurance athletes. Phys Sportsmed, 47(3), 249-52.
  • Felber Dietrich, D., Ackermann-Liebrich, U., Schindler, C., Barthelemy, JC., Brandli, O., Gold, DR., et al. (2008). Effect of physical activity on heart rate variability in normal weight, overweight and obese subjects: results from the SAPALDIA study. Eur J Appl Physiol, 104(3), 557–65.
  • Fox, K. R. (2011). Department of Health. Start active, stay active: report on physical activity in the UK: a report on physical activity from the four home countried Chief Medical Officers. London.
  • Henje Blom, E., Olsson, EM., Serlachius, E., Ericson, M., Ingvar, M. (2009). Heart rate variability is related to self-reported physical activity in a healthy adolescent population. Eur J Appl Physiol, 106(6), 877–83.
  • Islam, SKMA., Kim, D., Lee, YS., Moon, SS. (2018). Association between diabetic peripheral neuropathy and heart rate variability in subjects with type 2 diabetes. Diabetes Res Clin Pract, 140, 18-26.
  • Izci, F., Hocagil, H., Izci, S., Izci, V., Koc, MI., Acar, RD. (2015). P-wave and QT dispersion in patients with conversion disorder. Ther Clin Risk Manag, 26(11), 475-80.
  • Kaikkonen, KM., Korpelainen, RI., Tulppo, MP., Kaikkonen, HS., Vanhala, ML., Kallio, MA., et al. (2014). Physical activity and aerobic fitness are positively associated with heart rate variability in obese adults. J Phys Act Health, 11(8), 1614–21.
  • Kuryanova, EV., Tryasuchev, AV., Stupin, VO., Teplyi, DL. (2017). Effect of stimulation of neurotransmitter systems on heart rate variability and β-adrenergic responsiveness of erythrocytes in outbred rats. Bull Exp Biol Med, 163(1), 31-6.
  • Kuryanova, EV., Tryasuchev, AV., Stupin, VO., Teplyi, DL. (2018). Effect of atropine on adrenergic responsiveness of erythrocyte and heart rhythm variability in outbred rats with stimulation of the central neurotransmitter systems. Bull Exp Biol Med, 165(5), 597-601.
  • Larosa, C., Infusino, F., Sgueglia, GA., Aurigemma, C., Sestito, A., Lombardo, A, et al. (2005). Effect of primary percutaneous coronary intervention versus thrombolysis on ventricular arrhythmias and heart rate variability in acute myocardial infarction. Ital Heart J, 6(8), 629-33.
  • Lavie, CJ., Church, TS., Milani, RV., Earnest, CP. (2011). Impact of physical activity, cardiorespiratory fitness, and exercise training on markers of inflammation. J Cardiopulm Rehabil Prev, 31(3), 137–45.
  • Lazar, JM., Khanna, N., Chesler, R., Salciccioli, L. (2013). Swimming and the heart. Int J Cardiol, 168(1), 19–26.
  • Lin, YY., Lu, WA., Hsieh, YC., Chang, HH., Shih, CC., Jeng, MJ, et al. (2017). Effect of position on the residual heart rate variability in patients after orthotopic heart transplantation. J Chin Med Assoc, 80(2), 63-71.
  • Lucini, D., de Giacomi, G., Tosi, F., Malacarne, M., Respizzi, S., Pagani, M. (2013). Altered cardiovascular autonomic regulation in overweight children engaged in regular physical activity. Heart, 99(6), 376–81.
  • Maged, AM., Abbassy, AH., Sakr, HRS., Elsawah, H., Wagih, H., Ogila, AI. et al. (2018). Effect of swimming exercise on premenstrual syndrome. Arch Gynecol Obstet, 297(4), 951-9.
  • Moraes, IAP., Silva, TD., Massetti,T., Menezes, LDC., Ribeiro, VF., Tropiano, LMC., et al. (2019). Fractal correlations and linear analyses of heart rate variability in healthy young people with different levels of physical activity. Cardiol Young, 29(10), 1236-42.
  • Medeiros, A., Oliveira, EM., Gianolla, R., Casarini, DE., Negrão, CE., Brum, PC. (2004). Swimming training increases cardiac vagal activity and induces cardiac hypertrophy in rats. Braz J Med Biol Res, 37(12), 1909–17.
  • Nagai, N. and Moritani, T. (2004). Effect of physical activity on autonomic nervous system function in lean and obese children. Int J Obes Relat Metab Disord, 28(1), 27–33.
  • Nagueh, SF., Smiseth, OA., Appleton, CP., Byrd, BF., Dokainish, H., Edvardsen, T., et al; (2016). Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging, 17(12), 1321-60.
  • Prodel, E., Peçanha, T., Silva, LPD., Paula, RB., Martinez, DG., Lima, JRP., et al. (2017). Different times of day do not change heart rate variability recovery after light exercise in sedentary subjects: 24 hours Holter monitoring. Chronobiol Int, 34(10), 1354-65.
  • Nualnim, N., Parkhurst, K., Dhindsa, M., Tarumi, T., Vavrek, J., Tanaka, H. (2012). Effects of swimming training on blood pressure and vascular function in adults >50 years of age. Am J Cardiol, 109(7), 1005–10.
  • Plews, DJ., Laursen, PB., Stanley, J., Kilding, AE., Buchheit, M. (2013). Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med, 43(9), 773–81.
  • Sandercock, GRH., Bromley, PD., Brodie, DA. (2005). Effects of exercise on heart rate variability: inferences from meta-analysis. Med Sci Sports Exerc, 37, 433–9.
  • Shaffer, F. and Ginsberg, JP. (2017). An overview of heart rate variability metrics and norms. Front Public Health, 5: 258.
  • Sharma, VK., Subramanian, SK., Arunachalam, V., Rajendran, R. (2015). Heart rate variability in adolescents—normative data stratified by sex and physical activity. J Clin Diagn Res, 9(10), 08–13. Sen, J. and McGill, D. (2018). Fractal analysis of heart rate variability as a predictor of mortality: A systematic review and meta-analysis. Chaos 28(7), 072101.
  • Sharma, VK., Subramanian, SK., Radhakrishnan, K., Rajendran, R., Ravindran, BS., Arunachalam, V. (2017). Comparison of structured and unstructured physical activity training on predicted vo2max and heart rate variability in adolescents - A Randomized Control Trial. J Basic Clin Physiol Pharmacol, 28(3), 225-38.
  • Sessa, F., Anna, V., Messina, G., Cibelli, G., Monda, V., Marsala, G, et al. (2018). Heart rate variability as predictive factor for sudden cardiac death. Aging (Albany NY), 10(2), 166-77.
  • Tanaka, H. (2009). Swimming exercise: impact of aquatic exercise on cardiovascular health. Sports Med, 39(5), 377–87.
  • Tian, J., Yu, T., Xu, Y., Pu, S., Lv, Y., Zhang, X. et al. (2018). Swimming training reduces neuroma pain by regulating neurotrophins. Med Sci Sports Exerc, 50(1), 54-61.
  • World Health Organization. (2011). Global strategy on diet, physical activity and health. Information sheet: global recommendations on physical activity for health 5–17 years old.
  • Xhyheri, B., Manfrini, O., Mazzolini, M., Pizzi, C., Bugiardini, R. (2012). Heart rate variability today. Prog Cardiovasc Dis, 55(3), 321-31.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm 2021 Haziran
Yazarlar

Ayhan Pektas 0000-0002-3238-0752

Mehmet Bilgehan Pektaş 0000-0003-0055-7688

Proje Numarası -
Yayımlanma Tarihi 26 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 6 Sayı: 1

Kaynak Göster

APA Pektas, A., & Pektaş, M. B. (2021). How Do Different Types of Physical Activity Affect Cardiac Functions in Children?. Eurasian Research in Sport Science, 6(1), 29-41.