Araştırma Makalesi
BibTex RIS Kaynak Göster

Enhancement of Surface Properties of 316L Stainless Steel with Silver Nanoparticles using Airbrush Spray Process

Yıl 2023, , 357 - 373, 31.08.2023
https://doi.org/10.18185/erzifbed.1275972

Öz

In this study, the surfaces of 316L stainless steel, which is frequently preferred in biomedical applications, were modified with silver nanoparticles (Ag NPs) to improve their antibacterial and anticorrosive properties. Firstly, Ag NPs were synthesized using a completely green a plant-mediated ultrasound-assisted synthesis method and characterized. Next, Ag NPs were coated onto the surface of the 316L with the airbrush spray technique. The coated surfaces were examined by SEM, surface roughness, profilometer, optical microscope, electrochemical corrosion, and disk diffusion analyses. The average surface roughness values of the surface modified samples were found to be moderately suitable for use in biomaterials while exhibiting corrosion resistance and antibacterial resistance. The Ag NPs coating offers significant potential for biomedical applications.

Destekleyen Kurum

Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpasa

Proje Numarası

FYL-2021- 36085

Teşekkür

This study was funded by Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpasa. Project number: FYL-2021- 36085.

Kaynakça

  • [1] Hanawa, T. (2019). Overview of metals and applications. Metals for Biomedical Devices, 3–29. https://doi.org/10.1016/B978-0-08-102666-3.00001-8
  • [2] Ivanova, E. P., Bazaka, K., & Crawford, R. J. (2014). Metallic biomaterials: types and advanced applications. New Functional Biomaterials for Medicine and Healthcare, 121–147. https://doi.org/10.1533/9781782422662.121
  • [3] Mosas, K. K. A., Chandrasekar, A. R., Dasan, A., Pakseresht, A., & Galusek, D. (2022). Recent Advancements in Materials and Coatings for Biomedical Implants. Gels 2022, Vol. 8, Page 323, 8(5), 323. https://doi.org/10.3390/GELS8050323
  • [4] Kumar, P., Duraipandy, N., Manikantan Syamala, K., & Rajendran, N. (2018). Antibacterial effects, biocompatibility and electrochemical behavior of zinc incorporated niobium oxide coating on 316L SS for biomedical applications. Applied Surface Science, 427, 1166–1181. https://doi.org/10.1016/J.APSUSC.2017.08.221 [5] Kumar, M., Kumar, R., & Kumar, S. (2021). Coatings on orthopedic implants to overcome present problems and challenges: A focused review. Materials Today: Proceedings, 45, 5269–5276. https://doi.org/10.1016/J.MATPR.2021.01.831
  • [6] Garcia-Lobato, M. A., Mtz-Enriquez, A. I., Garcia, C. R., Velazquez-Manzanares, M., Avalos-Belmontes, F., Ramos-Gonzalez, R., & Garcia-Cerda, L. A. (2019). Corrosion resistance and in vitro bioactivity of dense and porous titania coatings deposited on 316L SS by spraying method. Applied Surface Science, 484, 975–980. https://doi.org/10.1016/J.APSUSC.2019.04.108
  • [7] Karabulut, G., Beköz Üllen, N., Akyüz, E., & Karakuş, S. (2023). Surface modification of 316L stainless steel with multifunctional locust gum/polyethylene glycol-silver nanoparticles using different coating methods. Progress in Organic Coatings, 174, 107291.
  • [8] Das, S., Sen, B., & Debnath, N. (2015). Recent trends in nanomaterials applications in environmental monitoring and remediation. Environmental Science and Pollution Research 2015 22:23, 22(23), 18333–18344. https://doi.org/10.1007/S11356-015-5491-6
  • [9] Prema, P., Lakshmi Priya, S., & Rameshkumar, G. (2012). Bio-based and chemical mediated fabrication of silver nanoparticles and evaluation of their potential antimicrobial activity - A comparative view. International Journal of Nanoparticles, 5(4), 338–357. https://doi.org/10.1504/IJNP.2012.049910
  • [10] Al-Sheddi, E. S., Farshori, N. N., Al-Oqail, M. M., Al-Massarani, S. M., Saquib, Q., Wahab, R., Musarrat, J., Al-Khedhairy, A. A., & Siddiqui, M. A. (2018). Anticancer potential of green synthesized silver nanoparticles using extract of nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorganic Chemistry and Applications, Nov(1), 9390784. https://doi.org/10.1155/2018/9390784
  • [11] Rana, A., Yadav, K., & Jagadevan, S. (2020). A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. Journal of Cleaner Production, 272, 122880. https://doi.org/10.1016/j.jclepro.2020.122880
  • [12] Chavali, M. S., & Nikolova, M. P. (2019). Metal oxide nanoparticles and their applications in nanotechnology. SN Applied Sciences 2019 1:6, 1(6), 1–30. https://doi.org/10.1007/S42452-019-0592-3
  • [13] Jamkhande, P. G., Ghule, N. W., Bamer, A. H., & Kalaskar, M. G. (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 53, 101174. https://doi.org/10.1016/j.jddst.2019.101174
  • [14] Ahmad, S., Munir, S., Zeb, N., Ullah, A., Khan, B., Ali, J., Bilal, M., Omer, M., Alamzeb, M., Salman, S. M., & Ali, S. (2019). Green nanotechnology: a review on green synthesis of silver nanoparticles — an ecofriendly approach. International Journal of Nanomedicine, 14, 5087. https://doi.org/10.2147/IJN.S200254
  • [15] Karadirek, Ş., & Okkay, H. (2019). Ultrasound assisted green synthesis of silver nanoparticle attached activated carbon for levofloxacin adsorption. Journal of the Taiwan Institute of Chemical Engineers, 105, 39–49. https://doi.org/10.1016/J.JTICE.2019.10.007
  • [16] Karakuş, S., Taşaltın, N., Taşaltın, C., & Üllen, N. B. (2021). Synthesis and Characterization of Konjac Gum/Polyethylene Glycol-Silver Nanoparticles and their Potential Application as a Colorimetric Sensor for Hydrogen Peroxide. Journal of Inorganic and Organometallic Polymers and Materials, 31(9), 3726–3739. https://doi.org/10.1007/S10904-021-01984-5
  • [17] Tan, E., Kahyaoğlu, İ. M., & Karakuş, S. (2021). A sensitive and smartphone colorimetric assay for the detection of hydrogen peroxide based on antibacterial and antifungal matcha extract silver nanoparticles enriched with polyphenol. Polymer Bulletin, 1–27. https://doi.org/10.1007/S00289-021-03857 [18] Zhang, S., Liang, X., Gadd, G. M., & Zhao, Q. (2021). A sol–gel based silver nanoparticle/polytetrafluorethylene (AgNP/PTFE) coating with enhanced antibacterial and anti-corrosive properties. Applied Surface Science, 535, 147675. https://doi.org/10.1016/J.APSUSC.2020.147675
  • [19] Abdulsada, F. W., & Hammood, A. S. (2021b). Characterization of corrosion and antibacterial resistance of hydroxyapatite/silver nano particles powder on 2507 duplex stainless steel. Materials Today: Proceedings, 42, 2301–2307. https://doi.org/10.1016/J.MATPR.2020.12.319
  • [20] Alias, R., Mahmoodian, R., & Abd Shukor, M. H. (2019). Development and characterization of a multilayer silver/silver-tantalum oxide thin film coating on stainless steel for biomedical applications. International Journal of Adhesion and Adhesives, 92, 89–98. https://doi.org/10.1016/J.IJADHADH.2019.04.010
  • [21] Aminatun, Furqon, I. A., Hikmawati, D., & Abdullah, C. A. C. (2021). Antibacterial Properties of Silver Nanoparticle (AgNPs) on Stainless Steel 316L. Nanomedicine Research Journal, 6(2), 117–127. https://doi.org/10.22034/NMRJ.2021.02.004
  • [22] Abbas, A., & Amin, H. M. A. (2022). Silver nanoparticles modified electrodes for electroanalysis: An updated review and a perspective. Microchemical Journal, 175, 107166. https://doi.org/10.1016/J.MICROC.2021.107166
  • [23] Soe, H. M., Abd Manaf, A., Matsuda, A., & Jaafar, M. (2021). Performance of a silver nanoparticles-based polydimethylsiloxane composite strain sensor produced using different fabrication methods. Sensors and Actuators A: Physical, 329, 112793. https://doi.org/10.1016/J.SNA.2021.112793
  • [24] Santhosh, A., Theertha, V., Prakash, P., & Smitha Chandran, S. (2021). From waste to a value added product: Green synthesis of silver nanoparticles from onion peels together with its diverse applications. Materials Today: Proceedings, 46, 4460–4463. https://doi.org/10.1016/J.MATPR.2020.09.680
  • [25] Gulbagca, F., Ozdemir, S., Gulcan, M., & Sen, F. (2019). Synthesis and characterization of Rosa canina-mediated biogenic silver nanoparticles for anti-oxidant, antibacterial, antifungal, and DNA cleavage activities. Heliyon, 5(12), e02980. https://doi.org/10.1016/J.HELIYON.2019.E02980
  • [26] Gomathi, M., Rajkumar, P. V., Prakasam, A., & Ravichandran, K. (2017). Green synthesis of silver nanoparticles using Datura stramonium leaf extract and assessment of their antibacterial activity. Resource-Efficient Technologies, 3(3), 280–284. https://doi.org/10.1016/J.REFFIT.2016.12.005
  • [27] Mallikarjuna, K., John Sushma, N., Narasimha, G., Manoj, L., & Deva Prasad Raju, B. (2014). Phytochemical fabrication and characterization of silver nanoparticles by using Pepper leaf broth. Arabian Journal of Chemistry, 7(6), 1099–1103. https://doi.org/10.1016/J.ARABJC.2012.04.001
  • [28] LewisOscar, F., Nithya, C., Vismaya, S., Arunkumar, M., Pugazhendhi, A., Nguyen-Tri, P., Alharbi, S. A., Alharbi, N. S., & Thajuddin, N. (2021). In vitro analysis of green fabricated silver nanoparticles (AgNPs) against Pseudomonas aeruginosa PA14 biofilm formation, their application on urinary catheter. Progress in Organic Coatings, 151, 106058. https://doi.org/10.1016/J.PORGCOAT.2020.106058
  • [29] Aygün, A., Özdemir, S., Gülcan, M., Cellat, K., & Şen, F. (2020). Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. Journal of Pharmaceutical and Biomedical Analysis, 178, 112970. https://doi.org/10.1016/J.JPBA.2019.112970
  • [30] Jeeva Jothi, K., Balachandran, S., & Palanivelu, K. (2022). Synergistic combination of Phyllanthus niruri / silver nanoparticles for anticorrosive application. Materials Chemistry and Physics, 279, 125794. https://doi.org/10.1016/J.MATCHEMPHYS.2022.125794
  • [31] Soloviev, M., & Gedanken, A. (2011). Coating a stainless steel plate with silver nanoparticles by the sonochemical method. Ultrasonics Sonochemistry, 18(1), 356–362. https://doi.org/10.1016/J.ULTSONCH.2010.06.015
  • [32] Albrektsson, T., & Wennerberg, A. (2004). Oral implant surfaces: Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. The International Journal of Prosthodontics, 17(5), 536–543.
  • [33] Qian, H., Li, M., Li, Z., Lou, Y., Huang, L., Zhang, D., Xu, D., Du, C., Lu, L., & Gao, J. (2017). Mussel-inspired superhydrophobic surfaces with enhanced corrosion resistance and dual-action antibacterial properties. Materials Science and Engineering: C, 80, 566–577. https://doi.org/10.1016/J.MSEC.2017.07.002
  • [34] Panáček, A., Kvítek, L., Prucek, R., Kolář, M., Večeřová, R., Pizúrová, N., Sharma, V. K., Nevěčná, T., & Zbořil, R. (2006). Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. Journal of Physical Chemistry B, 110(33), 16248–16253. https://doi.org/10.1021/JP063826H/SUPPL_FILE/JP063826HSI20060619_085949.PDF
  • [35] Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73(6), 1712–1720. https://doi.org/10.1128/AEM.02218-06

Püskürtme Kaplama Tekniği ile 316L Paslanmaz Çeliğin Yüzey Özelliklerinin Gümüş Nanopartiküllerle İyileştirilmesi

Yıl 2023, , 357 - 373, 31.08.2023
https://doi.org/10.18185/erzifbed.1275972

Öz

Bu çalışmada, biyomedikal uygulamalarda sıklıkla tercih edilen 316L paslanmaz çelik yüzeyinin antibakteriyel ve antikorozif özelliklerini geliştirmek amacıyla yüzeyleri gümüş nanopartiküllerle (Ag NPs) modifiye edilmiştir. İlk olarak gümüş nanopartiküller tamamen yeşil bir yolla bitki aracılığıyla sonikasyon yöntemiyle desteklenerek sentezlenmiş ve karakterize edilmiştir. Ardından çeliğin yüzeyine püskürtme yöntemiyle kaplanmıştır. Kaplanan yüzeyler SEM, yüzey pürüzlülük, profilometre, optik mikroskop, elektrokimyasal korozyon ve disk difüzyon testleriyle incelenmiştir. Kaplanmış numunelerin yüzey pürüzlülük değerleri biyomalzemelerde kullanım için orta derece sınıfa uygunluk gösterirken, korozyon dayanımı ve antibakteriyel davranış sergilediği tespit edilmiştir. Gerçekleştirilen kaplama biyomedikal uygulamalar için önemli bir potansiyel sunmaktadır.

Proje Numarası

FYL-2021- 36085

Kaynakça

  • [1] Hanawa, T. (2019). Overview of metals and applications. Metals for Biomedical Devices, 3–29. https://doi.org/10.1016/B978-0-08-102666-3.00001-8
  • [2] Ivanova, E. P., Bazaka, K., & Crawford, R. J. (2014). Metallic biomaterials: types and advanced applications. New Functional Biomaterials for Medicine and Healthcare, 121–147. https://doi.org/10.1533/9781782422662.121
  • [3] Mosas, K. K. A., Chandrasekar, A. R., Dasan, A., Pakseresht, A., & Galusek, D. (2022). Recent Advancements in Materials and Coatings for Biomedical Implants. Gels 2022, Vol. 8, Page 323, 8(5), 323. https://doi.org/10.3390/GELS8050323
  • [4] Kumar, P., Duraipandy, N., Manikantan Syamala, K., & Rajendran, N. (2018). Antibacterial effects, biocompatibility and electrochemical behavior of zinc incorporated niobium oxide coating on 316L SS for biomedical applications. Applied Surface Science, 427, 1166–1181. https://doi.org/10.1016/J.APSUSC.2017.08.221 [5] Kumar, M., Kumar, R., & Kumar, S. (2021). Coatings on orthopedic implants to overcome present problems and challenges: A focused review. Materials Today: Proceedings, 45, 5269–5276. https://doi.org/10.1016/J.MATPR.2021.01.831
  • [6] Garcia-Lobato, M. A., Mtz-Enriquez, A. I., Garcia, C. R., Velazquez-Manzanares, M., Avalos-Belmontes, F., Ramos-Gonzalez, R., & Garcia-Cerda, L. A. (2019). Corrosion resistance and in vitro bioactivity of dense and porous titania coatings deposited on 316L SS by spraying method. Applied Surface Science, 484, 975–980. https://doi.org/10.1016/J.APSUSC.2019.04.108
  • [7] Karabulut, G., Beköz Üllen, N., Akyüz, E., & Karakuş, S. (2023). Surface modification of 316L stainless steel with multifunctional locust gum/polyethylene glycol-silver nanoparticles using different coating methods. Progress in Organic Coatings, 174, 107291.
  • [8] Das, S., Sen, B., & Debnath, N. (2015). Recent trends in nanomaterials applications in environmental monitoring and remediation. Environmental Science and Pollution Research 2015 22:23, 22(23), 18333–18344. https://doi.org/10.1007/S11356-015-5491-6
  • [9] Prema, P., Lakshmi Priya, S., & Rameshkumar, G. (2012). Bio-based and chemical mediated fabrication of silver nanoparticles and evaluation of their potential antimicrobial activity - A comparative view. International Journal of Nanoparticles, 5(4), 338–357. https://doi.org/10.1504/IJNP.2012.049910
  • [10] Al-Sheddi, E. S., Farshori, N. N., Al-Oqail, M. M., Al-Massarani, S. M., Saquib, Q., Wahab, R., Musarrat, J., Al-Khedhairy, A. A., & Siddiqui, M. A. (2018). Anticancer potential of green synthesized silver nanoparticles using extract of nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorganic Chemistry and Applications, Nov(1), 9390784. https://doi.org/10.1155/2018/9390784
  • [11] Rana, A., Yadav, K., & Jagadevan, S. (2020). A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. Journal of Cleaner Production, 272, 122880. https://doi.org/10.1016/j.jclepro.2020.122880
  • [12] Chavali, M. S., & Nikolova, M. P. (2019). Metal oxide nanoparticles and their applications in nanotechnology. SN Applied Sciences 2019 1:6, 1(6), 1–30. https://doi.org/10.1007/S42452-019-0592-3
  • [13] Jamkhande, P. G., Ghule, N. W., Bamer, A. H., & Kalaskar, M. G. (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 53, 101174. https://doi.org/10.1016/j.jddst.2019.101174
  • [14] Ahmad, S., Munir, S., Zeb, N., Ullah, A., Khan, B., Ali, J., Bilal, M., Omer, M., Alamzeb, M., Salman, S. M., & Ali, S. (2019). Green nanotechnology: a review on green synthesis of silver nanoparticles — an ecofriendly approach. International Journal of Nanomedicine, 14, 5087. https://doi.org/10.2147/IJN.S200254
  • [15] Karadirek, Ş., & Okkay, H. (2019). Ultrasound assisted green synthesis of silver nanoparticle attached activated carbon for levofloxacin adsorption. Journal of the Taiwan Institute of Chemical Engineers, 105, 39–49. https://doi.org/10.1016/J.JTICE.2019.10.007
  • [16] Karakuş, S., Taşaltın, N., Taşaltın, C., & Üllen, N. B. (2021). Synthesis and Characterization of Konjac Gum/Polyethylene Glycol-Silver Nanoparticles and their Potential Application as a Colorimetric Sensor for Hydrogen Peroxide. Journal of Inorganic and Organometallic Polymers and Materials, 31(9), 3726–3739. https://doi.org/10.1007/S10904-021-01984-5
  • [17] Tan, E., Kahyaoğlu, İ. M., & Karakuş, S. (2021). A sensitive and smartphone colorimetric assay for the detection of hydrogen peroxide based on antibacterial and antifungal matcha extract silver nanoparticles enriched with polyphenol. Polymer Bulletin, 1–27. https://doi.org/10.1007/S00289-021-03857 [18] Zhang, S., Liang, X., Gadd, G. M., & Zhao, Q. (2021). A sol–gel based silver nanoparticle/polytetrafluorethylene (AgNP/PTFE) coating with enhanced antibacterial and anti-corrosive properties. Applied Surface Science, 535, 147675. https://doi.org/10.1016/J.APSUSC.2020.147675
  • [19] Abdulsada, F. W., & Hammood, A. S. (2021b). Characterization of corrosion and antibacterial resistance of hydroxyapatite/silver nano particles powder on 2507 duplex stainless steel. Materials Today: Proceedings, 42, 2301–2307. https://doi.org/10.1016/J.MATPR.2020.12.319
  • [20] Alias, R., Mahmoodian, R., & Abd Shukor, M. H. (2019). Development and characterization of a multilayer silver/silver-tantalum oxide thin film coating on stainless steel for biomedical applications. International Journal of Adhesion and Adhesives, 92, 89–98. https://doi.org/10.1016/J.IJADHADH.2019.04.010
  • [21] Aminatun, Furqon, I. A., Hikmawati, D., & Abdullah, C. A. C. (2021). Antibacterial Properties of Silver Nanoparticle (AgNPs) on Stainless Steel 316L. Nanomedicine Research Journal, 6(2), 117–127. https://doi.org/10.22034/NMRJ.2021.02.004
  • [22] Abbas, A., & Amin, H. M. A. (2022). Silver nanoparticles modified electrodes for electroanalysis: An updated review and a perspective. Microchemical Journal, 175, 107166. https://doi.org/10.1016/J.MICROC.2021.107166
  • [23] Soe, H. M., Abd Manaf, A., Matsuda, A., & Jaafar, M. (2021). Performance of a silver nanoparticles-based polydimethylsiloxane composite strain sensor produced using different fabrication methods. Sensors and Actuators A: Physical, 329, 112793. https://doi.org/10.1016/J.SNA.2021.112793
  • [24] Santhosh, A., Theertha, V., Prakash, P., & Smitha Chandran, S. (2021). From waste to a value added product: Green synthesis of silver nanoparticles from onion peels together with its diverse applications. Materials Today: Proceedings, 46, 4460–4463. https://doi.org/10.1016/J.MATPR.2020.09.680
  • [25] Gulbagca, F., Ozdemir, S., Gulcan, M., & Sen, F. (2019). Synthesis and characterization of Rosa canina-mediated biogenic silver nanoparticles for anti-oxidant, antibacterial, antifungal, and DNA cleavage activities. Heliyon, 5(12), e02980. https://doi.org/10.1016/J.HELIYON.2019.E02980
  • [26] Gomathi, M., Rajkumar, P. V., Prakasam, A., & Ravichandran, K. (2017). Green synthesis of silver nanoparticles using Datura stramonium leaf extract and assessment of their antibacterial activity. Resource-Efficient Technologies, 3(3), 280–284. https://doi.org/10.1016/J.REFFIT.2016.12.005
  • [27] Mallikarjuna, K., John Sushma, N., Narasimha, G., Manoj, L., & Deva Prasad Raju, B. (2014). Phytochemical fabrication and characterization of silver nanoparticles by using Pepper leaf broth. Arabian Journal of Chemistry, 7(6), 1099–1103. https://doi.org/10.1016/J.ARABJC.2012.04.001
  • [28] LewisOscar, F., Nithya, C., Vismaya, S., Arunkumar, M., Pugazhendhi, A., Nguyen-Tri, P., Alharbi, S. A., Alharbi, N. S., & Thajuddin, N. (2021). In vitro analysis of green fabricated silver nanoparticles (AgNPs) against Pseudomonas aeruginosa PA14 biofilm formation, their application on urinary catheter. Progress in Organic Coatings, 151, 106058. https://doi.org/10.1016/J.PORGCOAT.2020.106058
  • [29] Aygün, A., Özdemir, S., Gülcan, M., Cellat, K., & Şen, F. (2020). Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. Journal of Pharmaceutical and Biomedical Analysis, 178, 112970. https://doi.org/10.1016/J.JPBA.2019.112970
  • [30] Jeeva Jothi, K., Balachandran, S., & Palanivelu, K. (2022). Synergistic combination of Phyllanthus niruri / silver nanoparticles for anticorrosive application. Materials Chemistry and Physics, 279, 125794. https://doi.org/10.1016/J.MATCHEMPHYS.2022.125794
  • [31] Soloviev, M., & Gedanken, A. (2011). Coating a stainless steel plate with silver nanoparticles by the sonochemical method. Ultrasonics Sonochemistry, 18(1), 356–362. https://doi.org/10.1016/J.ULTSONCH.2010.06.015
  • [32] Albrektsson, T., & Wennerberg, A. (2004). Oral implant surfaces: Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. The International Journal of Prosthodontics, 17(5), 536–543.
  • [33] Qian, H., Li, M., Li, Z., Lou, Y., Huang, L., Zhang, D., Xu, D., Du, C., Lu, L., & Gao, J. (2017). Mussel-inspired superhydrophobic surfaces with enhanced corrosion resistance and dual-action antibacterial properties. Materials Science and Engineering: C, 80, 566–577. https://doi.org/10.1016/J.MSEC.2017.07.002
  • [34] Panáček, A., Kvítek, L., Prucek, R., Kolář, M., Večeřová, R., Pizúrová, N., Sharma, V. K., Nevěčná, T., & Zbořil, R. (2006). Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. Journal of Physical Chemistry B, 110(33), 16248–16253. https://doi.org/10.1021/JP063826H/SUPPL_FILE/JP063826HSI20060619_085949.PDF
  • [35] Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73(6), 1712–1720. https://doi.org/10.1128/AEM.02218-06
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gizem Karabulut 0000-0003-0930-5380

Nuray Beköz Üllen 0000-0003-2705-2559

Selcan Karakuş 0000-0002-8368-4609

Proje Numarası FYL-2021- 36085
Erken Görünüm Tarihi 24 Ağustos 2023
Yayımlanma Tarihi 31 Ağustos 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Karabulut, G., Beköz Üllen, N., & Karakuş, S. (2023). Enhancement of Surface Properties of 316L Stainless Steel with Silver Nanoparticles using Airbrush Spray Process. Erzincan University Journal of Science and Technology, 16(2), 357-373. https://doi.org/10.18185/erzifbed.1275972