Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, , 731 - 743, 31.12.2023
https://doi.org/10.18185/erzifbed.1277057

Öz

Destekleyen Kurum

Kansai Altan Boya Sanayi ve Ticaret A.Ş

Teşekkür

Desteklerinden dolayı Kansai Altan Boya Sanayi ve Ticaret A.Ş'ye teşekkür ederiz.

Kaynakça

  • [1] Fettis, G., (1995) Automotive Paints and Coatings (1. Edition), Cathodic Electrodeposition Paints (pp. 99-100), VCH Verlagsgesellschaft, Germany.
  • [2] Tracton, A. A., (2006) Coatings Materials and Surface Coatings (3. edition), Corrosion and Its Control by Coatings (pp. 57-58), Taylor & Francis Group, USA.
  • [3] Wang, T., Qi, S., Ren, B., Tong, Z., (2007) Preparation and surface characteristics of low-temperature curing fluorinated cathodic electrodeposition coating, Progress in Organic Coatings, 60, 132-139.
  • [4] He, X., Zhang, Y., He, J., Liu, F., (2020) Synthesis and characterization of cathodic electrodeposition coatings based on octadecyl-modified cationic waterborne polyurethanes, J. Coat. Technol. Res, 17, 1255-1268.
  • [5] Fujibayashi, T., Kasukawa, T., Morimoto, K., (1993) A novel binder suitable for cationic electrodeposition coatings based on a non-isocyanate chemistry. Progress in Organic Coatings, 22, 231-244.
  • [6] Ucan, C., Bora, M.O., Coban, O., (2019) The Effect of Cataphoresis Coating on Fatigue Behaviour of Control Arms under Corrosion Environment. Eurasia Proc. Sci. Technol. Eng. Math. (EPSTEM), 7 , 212–219.
  • [7] Kim, Y.S., Kim, J.G., (2017) Evaluation of Corrosion Fatigue and Life Prediction of Lower Arm for Automotive Suspension Component, Met.Mater.Int, 23, 98-125.
  • [8] Price, S.J., Figueira, R.B., (2017) Corrosion Protection Systems and Fatigue Corrosion in OffshoreWind Structures: CurrentStatus and FuturePerspectives, MDPI, 7, 24-25.
  • [9] Koleske, J. V., (1995) Paint and Coating Testing Manual (14. edition), Types of Metal Corrosion and Means of Corrosion Protective by Overlayers (pp 700-701), ASTM Publication, USA.
  • [10] Miskovic, V. B., Stankovic V. B., (2002) The mechanism of cathodic electrodeposition of epoxy coatings and the corrosion behaviour of the electrodeposited coatings, J. Serb. Chem. Soc, 67(5), 305-324.
  • [11] Chaves, S. E., Dos Santos J. E., Araujo, O. G. R., Oliveira, V. J., Frescura, A. L. V., Curtius, J. A., (2010) Metals and phosphorus determination in vegetable seeds used in the production of biodiesel by ICP OES and ICP-MS, Elsevier Microchemical Journal, 96, 71-76.
  • [12] Silva, F. L. F., Duarte, O. A. T., Melo, S. L., Riberio, D. P. L., Gouveia, T. S., Lopes, S. G., Matos, O. W., (2015) Development of a wet digestion method for paints for the determination of metals and metalloids using inductively coupled plasma optical emission spectrometry, Talanta, 146, 188-194.
  • [13] Miller-Ihli J. N., (1992) Hazardous Metals in the Environment. Stoeppler M., Sampling Procedures (pp. 379-387). Elsevier Science, USA.
  • [14] Shen, K., Zhang, N., Yang, X., Li, Z., Zhang, Y., Zhou, T., (2015) Dry Ashing Preparation of (Quasi)solid Samples for the Determination of Inorganic Elements by Atomic/Mass Spectrometry, Applied Spectroscopy Reviews, 50, 304-331.
  • [15] Hoenig, M., Kersabiec, D. A-M., (1996) Sample preparation steps for analysis by atomic spectroscopy methods: present status, Applied Spectroscopy Reviews, 51, 1297-1307.
  • [16] Soylak, M., Tüzen, M., Narin, İ., Sarı, H., (2004) Comparison of microwave, dry and wet digestion procedures for the determination of trace metal contents in spice samples produced in Turkey, Journal of Food and Drug Analysis, 12, 254-258.
  • [17] Magnusson, B., (2014) Eurachem Guide: The Fitness for Purpose of Analytical Methods – A Laboratory Guide to Method Validation and Related Topics. Örnemark, U., Method Performance Characteristics (pp. 19-38). Eurachem, Belgium.
  • [18] Morishige, Y., Kimura, A., (2004) Ionization Interference in Inductively Coupled Plasma-Optical Emission Spectroscopy, SEI TECHNICAL REVIEW, 66, 106-111.

Simultaneous Determination Of Sodium, Potassium, Calcium, Nickel, Chromium, Iron And Zinc In Cathodic Electrodeposition Primers By Using ICP-OES

Yıl 2023, , 731 - 743, 31.12.2023
https://doi.org/10.18185/erzifbed.1277057

Öz

Eksiuçsal elektrikli bırakım astarlarında bulunan Sodyum, Potasyum, Kalsiyum, Nikel, Krom, Demir ve Çinoko’nun eş zamanlı tayini İndüktif Eşleşmiş Plazma-Optik Emisyon Spektrometresi kullanılarak gerçekleştirilmiştir. Gerçek çoklu görünüm plasma teknolojisine sahip SPECTRO ARCOS model cihazı ile iç standart olarak kullanılan Skandiyum ve Sodyum, Potasyum , Kalsiyum, Demir, Krom Çinko için sırasıyla 361.384, 588.995, 766.491, 396.847, 259.941, 232.003, 267.747, 213.856 nm dalgaboyları radyal tip plasma bakışı kullanılarak takip edilmiştir. Örnek hazırlama aşamasında, eksiuçsal elektrikli bırakım astarları dilusyon solventi ile seyreltilip vortekslendikten sonra analizi gerçekleştirilmiştir. Yöntemde seçicilik, belirtme alt sınırı (LOQ), doğrusallık, doğruluk, kesinlik, geri kazanım, matriks etkisi ve dilüsyon doğruluğu incelenip Eurachem The Fitness for Purpose of Analytical Methods ikinci baskısına (2014) göre validasyon gerçekleştirilmiştir. Bu yöntemdeki belirtme alt sınır derişimleri sırasıyla Sodyum, Potasyum, Kalsiyum, Nikel, Krom için 0.600 mg/kg, Demir ve Çinko için ise 1.00 mg/kg’dır. Doğrusal kalibrasyon eğrisi aralığı Sodyum, Potasyum, Kalsiyum, Nikel, Krom için 0.600-6.00 mg/kg, Demir ve Çinko için ise 1.00-20.0 mg/kg’dır. Bununla birlikte, her bir analitin belirtme alt sınırı derişimindeki geri kazanım değerleri %80 ile %120 aralığında yer almaktadır.

Kaynakça

  • [1] Fettis, G., (1995) Automotive Paints and Coatings (1. Edition), Cathodic Electrodeposition Paints (pp. 99-100), VCH Verlagsgesellschaft, Germany.
  • [2] Tracton, A. A., (2006) Coatings Materials and Surface Coatings (3. edition), Corrosion and Its Control by Coatings (pp. 57-58), Taylor & Francis Group, USA.
  • [3] Wang, T., Qi, S., Ren, B., Tong, Z., (2007) Preparation and surface characteristics of low-temperature curing fluorinated cathodic electrodeposition coating, Progress in Organic Coatings, 60, 132-139.
  • [4] He, X., Zhang, Y., He, J., Liu, F., (2020) Synthesis and characterization of cathodic electrodeposition coatings based on octadecyl-modified cationic waterborne polyurethanes, J. Coat. Technol. Res, 17, 1255-1268.
  • [5] Fujibayashi, T., Kasukawa, T., Morimoto, K., (1993) A novel binder suitable for cationic electrodeposition coatings based on a non-isocyanate chemistry. Progress in Organic Coatings, 22, 231-244.
  • [6] Ucan, C., Bora, M.O., Coban, O., (2019) The Effect of Cataphoresis Coating on Fatigue Behaviour of Control Arms under Corrosion Environment. Eurasia Proc. Sci. Technol. Eng. Math. (EPSTEM), 7 , 212–219.
  • [7] Kim, Y.S., Kim, J.G., (2017) Evaluation of Corrosion Fatigue and Life Prediction of Lower Arm for Automotive Suspension Component, Met.Mater.Int, 23, 98-125.
  • [8] Price, S.J., Figueira, R.B., (2017) Corrosion Protection Systems and Fatigue Corrosion in OffshoreWind Structures: CurrentStatus and FuturePerspectives, MDPI, 7, 24-25.
  • [9] Koleske, J. V., (1995) Paint and Coating Testing Manual (14. edition), Types of Metal Corrosion and Means of Corrosion Protective by Overlayers (pp 700-701), ASTM Publication, USA.
  • [10] Miskovic, V. B., Stankovic V. B., (2002) The mechanism of cathodic electrodeposition of epoxy coatings and the corrosion behaviour of the electrodeposited coatings, J. Serb. Chem. Soc, 67(5), 305-324.
  • [11] Chaves, S. E., Dos Santos J. E., Araujo, O. G. R., Oliveira, V. J., Frescura, A. L. V., Curtius, J. A., (2010) Metals and phosphorus determination in vegetable seeds used in the production of biodiesel by ICP OES and ICP-MS, Elsevier Microchemical Journal, 96, 71-76.
  • [12] Silva, F. L. F., Duarte, O. A. T., Melo, S. L., Riberio, D. P. L., Gouveia, T. S., Lopes, S. G., Matos, O. W., (2015) Development of a wet digestion method for paints for the determination of metals and metalloids using inductively coupled plasma optical emission spectrometry, Talanta, 146, 188-194.
  • [13] Miller-Ihli J. N., (1992) Hazardous Metals in the Environment. Stoeppler M., Sampling Procedures (pp. 379-387). Elsevier Science, USA.
  • [14] Shen, K., Zhang, N., Yang, X., Li, Z., Zhang, Y., Zhou, T., (2015) Dry Ashing Preparation of (Quasi)solid Samples for the Determination of Inorganic Elements by Atomic/Mass Spectrometry, Applied Spectroscopy Reviews, 50, 304-331.
  • [15] Hoenig, M., Kersabiec, D. A-M., (1996) Sample preparation steps for analysis by atomic spectroscopy methods: present status, Applied Spectroscopy Reviews, 51, 1297-1307.
  • [16] Soylak, M., Tüzen, M., Narin, İ., Sarı, H., (2004) Comparison of microwave, dry and wet digestion procedures for the determination of trace metal contents in spice samples produced in Turkey, Journal of Food and Drug Analysis, 12, 254-258.
  • [17] Magnusson, B., (2014) Eurachem Guide: The Fitness for Purpose of Analytical Methods – A Laboratory Guide to Method Validation and Related Topics. Örnemark, U., Method Performance Characteristics (pp. 19-38). Eurachem, Belgium.
  • [18] Morishige, Y., Kimura, A., (2004) Ionization Interference in Inductively Coupled Plasma-Optical Emission Spectroscopy, SEI TECHNICAL REVIEW, 66, 106-111.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Yalım Toscalı 0000-0002-8971-8830

Ayça Biçen 0000-0002-4156-6575

Erken Görünüm Tarihi 25 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Toscalı, Y., & Biçen, A. (2023). Simultaneous Determination Of Sodium, Potassium, Calcium, Nickel, Chromium, Iron And Zinc In Cathodic Electrodeposition Primers By Using ICP-OES. Erzincan University Journal of Science and Technology, 16(3), 731-743. https://doi.org/10.18185/erzifbed.1277057