Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 385 - 399, 31.08.2024
https://doi.org/10.18185/erzifbed.1434398

Öz

Kaynakça

  • [1] Somturk Yilmaz, B., Bekci, H., Altiparmak, A., Uysal, S., Şenkardeş, İ., Zengin, G. 2024. Determination of anticancer activity and biosynthesis of Cu, Zn, and Co hybrid nanoflowers with Tribulus terrestris L. extract. Process Biochemistry. 138: 14-22
  • [2] Uras, I.S, Karslı, B., Konuklugil, B., Ocsoy, I., Demirbas, A. 2023. Organic–Inorganic Nanocomposites of Aspergillus terreus Extract and Its Compounds with Antimicrobial Properties. Sustainability 2023, 15(5), 4638; https://doi.org/10.3390/su15054638
  • [3] Dadi, S., Celik, C., Ocsoy, I., 2020. Gallic acid nanofower immobilized membrane with peroxidase like activity for m cresol detection. Gallic acid nanofower immobilized membrane with peroxidase like activity for m cresol detection. Scientific Reports. 10:16765
  • [4]Yoshida, H., Takamura, N., Shuto, T., Ogata, K., Tokunaga, J. ve Kawai, K., 2010, The citrus flavonoids hesperetin and naringenin block the lipolytic actions of TNF-α in mouse adipocytes, Biochemical and Biophysical Research Communications, 394, 728-732.
  • [5] Zeng, W., Jin, L., Zhang, F., Zhang, C. ve Liang, W., 2018, Naringenin as a potential immunomodulator in therapeutics, Pharmacological Research, 135 (2018), 122–126.
  • [6]Zhang, J.J., Dong, X., Cao, Y.Y., Yuan, Y. D., Yang, Y.B., Yan, Y.Q., vd., 2020, Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China, Allergy, 75, 1730–41. doi: 10.1111/all. 14238.
  • [7]Zhang, L., Song, L., Zhang, P., Liu, T., Zhou, L., Yang, G., Lin, R. ve Zhang, J., 2015, Solubilities of naringin and naringenin in different solvents and dissociation constants of naringenin, Journal of Chemical & Engineering Data, 60(3), 932-40. https://doi.org/10.1021/je501004g.
  • [8]Wang, M.J., Chao, P.D., Hou, Y.C. ve Hsiu, S.L., 2006, Pharmacokinetics and conjugation metabolism of naringin and naringenin in rats after single dose and multiple dose administrations, Journal of Food and Drug Analysis, 14(3), 247-253.
  • [9]Wang, N., Li, D., Lu, N.H., Yi, L., Huang, X.W. ve Gao, Z.H., 2010, Peroxynitrite and hemoglobinmediated nitrative/oxidative modification of human plasma protein: effects of some flavonoids, Journal of Asian Natural Products Research, 12(4), 257-64. https://doi.org/10.1080/10286021003620226.
  • [10]Wang, Y., Wang, S., Firempong, C.K., Zhang, H., Wang, M., Zhang, Y., Zhu, Y., Yu, J., Xu, X., 2017, Enhanced solubility and bioavailability o fnaringenin via liposomal nanoformulation: preparation and in vitro and in vivo evaluations, AAPS PharmSciTech, (2017) 18, 586–94. doi: 10.1208/s12249-016-0537-8.
  • [11]Wang, Z., Wang, S., Zhao, J., Yu, C., Hu, Y., Tu, Y., Yang, Z., Zheng, J., Wang, Y., Gao, Y., 2019, Naringenin ameliorates renovascular hypertensive renal damage by normalizing the balance of reninangiotensin system components in rats, International Journal of Medical Sciences, 16, 644– 53. doi: 10.7150/ijms.31075.
  • [12]Wilcox, L.J., Borradaile, N.M. ve Huff, M.W., 1999, Antiatherogenic properties of naringenin, a citrus flavonoid, Cardiovascular Drug Reviews,17:160-178.
  • [13]Yao, L.H., Jiang, Y.M., Shi, J., Tomas-Barberan, F.A., Datta N., Singanusong, R., Chen, S. S., 2004, Flavonoids in food and their health benefits, Plant Foods for Human Nutrition, 59(3), 113-22. https://doi.org/10.1007/s11130-004- 0049-7.
  • [14]Alam, M.A., Subhan, N., Rahman, M.M., Uddin, S.J., Reza, H.M. ve Sarker, S.D., 2014, Effect of citrus flavonoids, naringin and naringenin on metabolic syndrome and their mechanisms of action, Advances and Nutrition, 5(4), 404- 17. https://doi.org/10.3945/an.113.005603.
  • [15]Alberca, R.W., Teixeira, F.M.E., Beserra, D.R., de Oliveira, E.A., de Andrade, M.M.S., Pietrobon, A.J. ve Sato, M.N., 2020, Perspective: the potential effects of naringenin in COVID19, Frontiers in Immunology, (2020) 11, 1.
  • [16]Bourian, M., Runkel, M., Krisp, A., Tegtmeier, M., Freudenstein, J. ve Legrum, W., 1999, Naringenin and interindividual variability in interaction of coumarin with grapefruit juice, Experimental and Toxicologic Pathology, (1999) 51, 289–93. doi: 10.1016/S0940- 2993(99)80008-6.
  • [17]Breinholt, V.M., Svendsen, G.W., Dragsted, L.O. ve Hossaini, A., 2008, The citrus-derived flavonoid naringenin exerts uterotrophic effects in female mice at human relevant doses, Basic and Clinical Pharmacology and Toxicology, (2008) 94, 30–6. doi: 10.1111/ j.1742- 7843.2004.pto_940106.x.
  • [18] Somturk B, Yilmaz I, Altinkaynak C, Karatepe A, Özdemir N, Ocsoy I (2016) Synthesis of urease hybrid nanofowers and their enhanced catalytic properties. Enzyme Microb Technol 86:134–142. doi:10.1016/j.enzmictec.2015.09.005
  • [19]Somturk B, Hançer M, Öcsoy İ, Ozdemir N (2015). Synthesis of copper ion incorporated horseradish peroxidase based hybrid nanoflowers for enhanced catalytic activity and stability. Dalton Trans., 44(31):13845-13852. doi:10.1039/c5dt01250c
  • [20]Noma, S.A., Somturk Yilmaz, B., Ulu, A., Ozdemir, N., Ateş, B. Development of l‐asparaginase@hybrid Nanoflowers (ASNase@HNFs) Reactor System with Enhanced Enzymatic Reusability and Stability Catalysis Letters. 2021,151:1191-1201 DOI:10.1007/s10562-020-03362-1
  • [21] Somturk B, Dayan S, Ozdemir N, Kalaycıoğlu Özpozan N (2022), Catalytic performance improvement with metal ion changes for efficient, stable, and reusable superoxide dismutase–metalphosphates hybrid nanoflowers, Chem Pap 76:4245–4260. https://doi.org/10.1007/s11696-022-02179-z
  • [22] E. Bor, U. Koca Caliskan, C. Anlas, G.D. Durbilmez, T. Bakirel, N. Ozdemir, Synthesis of Persea americana extract based hybrid nanoflowers as a new strategy to enhance hyaluronidase and gelatinase inhibitory activity and the evaluation of their toxicity potential, Inorg. Nano-Met. (2022) 1–3, https://doi.org/10.1080/ 24701556.2022.2072342.

Biosynthesis of Naringenin@Cu (II), Zn (II) Hybrid Nanoflower: Anticancer Activity Assay process

Yıl 2024, , 385 - 399, 31.08.2024
https://doi.org/10.18185/erzifbed.1434398

Öz

In the study, the synthesis of organic-inorganic hybrid nanoflowers, which have a flower-like structure and are called nanoflowers, was carried out. For this purpose, hybrid nanoflower synthesis was carried out using naringenin as the organic part and different metal ions (Cu and Zn) as the inorganic part. Various analyzes were carried out to characterize the synthesized nanoflowers (such as SEM, EDX, FTIR, XRD). In addition, the anticancer activities of hybrid nanoflowers were tested on the MCF7 (breast cancer) cell line. It was concluded that there was a good increase in anticancer activity when naringenin was converted into hybrid nanoflower form. In particular, the anticancer activity of hybrid nanoflowers synthesized with Zn metal ion was quite excellent. This means that Zn hybrid nanoflowers may be a safer therapeutic alternative than others.

Destekleyen Kurum

Erciyes Üniversitesi

Teşekkür

The author would like to thank Erciyes University, Drug Application and Research Center (ERFARMA) for laboratory and device support.

Kaynakça

  • [1] Somturk Yilmaz, B., Bekci, H., Altiparmak, A., Uysal, S., Şenkardeş, İ., Zengin, G. 2024. Determination of anticancer activity and biosynthesis of Cu, Zn, and Co hybrid nanoflowers with Tribulus terrestris L. extract. Process Biochemistry. 138: 14-22
  • [2] Uras, I.S, Karslı, B., Konuklugil, B., Ocsoy, I., Demirbas, A. 2023. Organic–Inorganic Nanocomposites of Aspergillus terreus Extract and Its Compounds with Antimicrobial Properties. Sustainability 2023, 15(5), 4638; https://doi.org/10.3390/su15054638
  • [3] Dadi, S., Celik, C., Ocsoy, I., 2020. Gallic acid nanofower immobilized membrane with peroxidase like activity for m cresol detection. Gallic acid nanofower immobilized membrane with peroxidase like activity for m cresol detection. Scientific Reports. 10:16765
  • [4]Yoshida, H., Takamura, N., Shuto, T., Ogata, K., Tokunaga, J. ve Kawai, K., 2010, The citrus flavonoids hesperetin and naringenin block the lipolytic actions of TNF-α in mouse adipocytes, Biochemical and Biophysical Research Communications, 394, 728-732.
  • [5] Zeng, W., Jin, L., Zhang, F., Zhang, C. ve Liang, W., 2018, Naringenin as a potential immunomodulator in therapeutics, Pharmacological Research, 135 (2018), 122–126.
  • [6]Zhang, J.J., Dong, X., Cao, Y.Y., Yuan, Y. D., Yang, Y.B., Yan, Y.Q., vd., 2020, Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China, Allergy, 75, 1730–41. doi: 10.1111/all. 14238.
  • [7]Zhang, L., Song, L., Zhang, P., Liu, T., Zhou, L., Yang, G., Lin, R. ve Zhang, J., 2015, Solubilities of naringin and naringenin in different solvents and dissociation constants of naringenin, Journal of Chemical & Engineering Data, 60(3), 932-40. https://doi.org/10.1021/je501004g.
  • [8]Wang, M.J., Chao, P.D., Hou, Y.C. ve Hsiu, S.L., 2006, Pharmacokinetics and conjugation metabolism of naringin and naringenin in rats after single dose and multiple dose administrations, Journal of Food and Drug Analysis, 14(3), 247-253.
  • [9]Wang, N., Li, D., Lu, N.H., Yi, L., Huang, X.W. ve Gao, Z.H., 2010, Peroxynitrite and hemoglobinmediated nitrative/oxidative modification of human plasma protein: effects of some flavonoids, Journal of Asian Natural Products Research, 12(4), 257-64. https://doi.org/10.1080/10286021003620226.
  • [10]Wang, Y., Wang, S., Firempong, C.K., Zhang, H., Wang, M., Zhang, Y., Zhu, Y., Yu, J., Xu, X., 2017, Enhanced solubility and bioavailability o fnaringenin via liposomal nanoformulation: preparation and in vitro and in vivo evaluations, AAPS PharmSciTech, (2017) 18, 586–94. doi: 10.1208/s12249-016-0537-8.
  • [11]Wang, Z., Wang, S., Zhao, J., Yu, C., Hu, Y., Tu, Y., Yang, Z., Zheng, J., Wang, Y., Gao, Y., 2019, Naringenin ameliorates renovascular hypertensive renal damage by normalizing the balance of reninangiotensin system components in rats, International Journal of Medical Sciences, 16, 644– 53. doi: 10.7150/ijms.31075.
  • [12]Wilcox, L.J., Borradaile, N.M. ve Huff, M.W., 1999, Antiatherogenic properties of naringenin, a citrus flavonoid, Cardiovascular Drug Reviews,17:160-178.
  • [13]Yao, L.H., Jiang, Y.M., Shi, J., Tomas-Barberan, F.A., Datta N., Singanusong, R., Chen, S. S., 2004, Flavonoids in food and their health benefits, Plant Foods for Human Nutrition, 59(3), 113-22. https://doi.org/10.1007/s11130-004- 0049-7.
  • [14]Alam, M.A., Subhan, N., Rahman, M.M., Uddin, S.J., Reza, H.M. ve Sarker, S.D., 2014, Effect of citrus flavonoids, naringin and naringenin on metabolic syndrome and their mechanisms of action, Advances and Nutrition, 5(4), 404- 17. https://doi.org/10.3945/an.113.005603.
  • [15]Alberca, R.W., Teixeira, F.M.E., Beserra, D.R., de Oliveira, E.A., de Andrade, M.M.S., Pietrobon, A.J. ve Sato, M.N., 2020, Perspective: the potential effects of naringenin in COVID19, Frontiers in Immunology, (2020) 11, 1.
  • [16]Bourian, M., Runkel, M., Krisp, A., Tegtmeier, M., Freudenstein, J. ve Legrum, W., 1999, Naringenin and interindividual variability in interaction of coumarin with grapefruit juice, Experimental and Toxicologic Pathology, (1999) 51, 289–93. doi: 10.1016/S0940- 2993(99)80008-6.
  • [17]Breinholt, V.M., Svendsen, G.W., Dragsted, L.O. ve Hossaini, A., 2008, The citrus-derived flavonoid naringenin exerts uterotrophic effects in female mice at human relevant doses, Basic and Clinical Pharmacology and Toxicology, (2008) 94, 30–6. doi: 10.1111/ j.1742- 7843.2004.pto_940106.x.
  • [18] Somturk B, Yilmaz I, Altinkaynak C, Karatepe A, Özdemir N, Ocsoy I (2016) Synthesis of urease hybrid nanofowers and their enhanced catalytic properties. Enzyme Microb Technol 86:134–142. doi:10.1016/j.enzmictec.2015.09.005
  • [19]Somturk B, Hançer M, Öcsoy İ, Ozdemir N (2015). Synthesis of copper ion incorporated horseradish peroxidase based hybrid nanoflowers for enhanced catalytic activity and stability. Dalton Trans., 44(31):13845-13852. doi:10.1039/c5dt01250c
  • [20]Noma, S.A., Somturk Yilmaz, B., Ulu, A., Ozdemir, N., Ateş, B. Development of l‐asparaginase@hybrid Nanoflowers (ASNase@HNFs) Reactor System with Enhanced Enzymatic Reusability and Stability Catalysis Letters. 2021,151:1191-1201 DOI:10.1007/s10562-020-03362-1
  • [21] Somturk B, Dayan S, Ozdemir N, Kalaycıoğlu Özpozan N (2022), Catalytic performance improvement with metal ion changes for efficient, stable, and reusable superoxide dismutase–metalphosphates hybrid nanoflowers, Chem Pap 76:4245–4260. https://doi.org/10.1007/s11696-022-02179-z
  • [22] E. Bor, U. Koca Caliskan, C. Anlas, G.D. Durbilmez, T. Bakirel, N. Ozdemir, Synthesis of Persea americana extract based hybrid nanoflowers as a new strategy to enhance hyaluronidase and gelatinase inhibitory activity and the evaluation of their toxicity potential, Inorg. Nano-Met. (2022) 1–3, https://doi.org/10.1080/ 24701556.2022.2072342.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nanokimya
Bölüm Makaleler
Yazarlar

Burcu Somtürk Yılmaz 0000-0002-2775-3083

Yayımlanma Tarihi 31 Ağustos 2024
Gönderilme Tarihi 9 Şubat 2024
Kabul Tarihi 16 Mayıs 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Somtürk Yılmaz, B. (2024). Biosynthesis of Naringenin@Cu (II), Zn (II) Hybrid Nanoflower: Anticancer Activity Assay process. Erzincan University Journal of Science and Technology, 17(2), 385-399. https://doi.org/10.18185/erzifbed.1434398