Araştırma Makalesi
BibTex RIS Kaynak Göster

Fabrication of cZIF-67/Ti3C2 Nanocomposites As Sulfur Host For Lithium-Sulfur Batteries

Yıl 2024, , 650 - 662, 31.12.2024
https://doi.org/10.18185/erzifbed.1520178

Öz

It is of great importance to develop high-performance energy storage systems that modern society needs for next-generation technologies such as electric vehicles, consumer electronics, and grid-scale storage. Lithium-sulfur (Li-S) batteries are one of the promising candidates for high-performance energy storage systems due to the high theoretical capacity of the sulfur. On the other hand, some drawbacks such as insulating nature of the sulfur and the polysulfide solubility limits the wide-spread application of Li-S batteries. Nanocomposite host materials with high surface area and conductive nature has a potential to improve the stability of sulfur cathodes. In this study, the MOF-derived heteroatom doped carbon (cZIF-67) and two dimensional Ti3C2 MXene materials were used to fabricated cZIF-67/Ti3C2 nanocomposites. The fabricated nanocomposites were used as sulfur host material for Li-S batteries. After the structural and chemical characterizations, S/cZIF-67/Ti3C2 nanocomposite cathodes were used in Li-S batteries, and their performance-related properties were examined. With the fabricated S/cZIF-67/Ti3C2 cathodes, the adverse effects caused by the insulating nature of sulfur and lithium polysulfides are eliminated.

Etik Beyan

There are no ethical issues regarding the publication of this study.

Destekleyen Kurum

Eskişehir Osmangazi University Scientific Research Projects Coordination Unit

Proje Numarası

FBG-2021-1703

Kaynakça

  • [1] Yuksel, R., et al., Necklace‐like Nitrogen‐Doped Tubular Carbon 3D Frameworks for Electrochemical Energy Storage. Advanced Functional Materials, 2020. 30(10): p. 1909725.
  • [2] Yuksel, R., et al., Metal-Organic Framework Integrated Anodes for Aqueous Zinc-Ion Batteries. Advanced Energy Materials, 2020. 10(16).
  • [3] Pang, Q., et al., Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy, 2016. 1(9): p. 16132.
  • [4] Huang, L., et al., Electrode Design for Lithium–Sulfur Batteries: Problems and Solutions. Advanced Functional Materials, 2020. 30(22): p. 1910375.
  • [5] Fang, R., et al., More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects. Advanced Materials, 2017. 29(48): p. 1606823.
  • [6] Boyd, D.A., Sulfur and its role in modern materials science. Angewandte Chemie International Edition, 2016. 55(50): p. 15486-15502.
  • [7] Qiu, T., et al., Metal–Organic Framework-Based Materials for Energy Conversion and Storage. ACS Energy Letters, 2020. 5(2): p. 520-532.
  • [8] Rana, M., et al., Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries. Nano Energy, 2020. 75: p. 105009.
  • [9] Ji, X., K.T. Lee, and L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Materials, 2009. 8(6): p. 500-506.
  • [10] Kim, H., et al., Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries. Nature Communications, 2015. 6(1): p. 7278.
  • [11] Seo, S.-D., et al., "Brain-Coral-Like" Mesoporous Hollow CoS2@N-Doped Graphitic Carbon Nanoshells as Efficient Sulfur Reservoirs for Lithium–Sulfur Batteries. Advanced Functional Materials, 2019. 29(38): p. 1903712.
  • [12] Wang, H., et al., Metal-organic frameworks for energy applications. Chem, 2017. 2(1): p. 52-80.
  • [13] Li, G., et al., A microporous carbon derived from metal-organic frameworks for long- life lithium sulfur batteries. International Journal of Energy Research, 2020. 44(3): p. 2126-2136.
  • [14] Guan, B., et al., Blocking Polysulfide with Co2B@ CNT via "Synergetic Adsorptive Effect" toward Ultrahigh-Rate Capability and Robust Lithium–Sulfur Battery. ACS nano, 2019. 13(6): p. 6742-6750.
  • [15] Yuksel, R., et al., Necklace-like Nitrogen-Doped Tubular Carbon 3D Frameworks for Electrochemical Energy Storage. Advanced Functional Materials, 2020. 30(10).
  • [16] Zhao, M., et al., A Perspective toward Practical Lithium–Sulfur Batteries. ACS Central Science, 2020. 6(7): p. 1095-1104.
  • [17] Li, K., et al., 3D MXene Architectures for Efficient Energy Storage and Conversion. Advanced Functional Materials, 2020. 30(47): p. 2000842.
  • [18] Liang, X., A. Garsuch, and L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high‐performance lithium–sulfur batteries. Angewandte Chemie, 2015. 127(13): p. 3979-3983.
  • [19] Zhao, Q., et al., 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium–sulfur batteries. Nanoscale, 2019. 11(17): p. 8442-8448.
  • [20] Naguib, M., et al., Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Advanced Materials, 2011. 23(37): p. 4248-4253.

Lityum-Sülfür Bataryalar İçin Kükürt Tutucu cZIF-67/Ti3C2 Nanokompozitlerin Üretimi

Yıl 2024, , 650 - 662, 31.12.2024
https://doi.org/10.18185/erzifbed.1520178

Öz

Modern toplumun elektrikli araçlar, tüketici elektroniği ve şebeke tipi depolama gibi yeni nesil teknolojiler için ihtiyaç duyduğu yüksek perform2anslı enerji depolama sistemlerinin geliştirilmesi büyük önem taşıyor. Lityum-sülfür (Li-S) bataryalar, kükürtün yüksek teorik kapasitesi nedeniyle yüksek performanslı enerji depolama sistemleri için umut verici adaylardan biridir. Öte yandan kükürt’ün yalıtkan doğası ve polisülfit çözünürlüğü gibi bazı dezavantajlar Li-S bataryaların geniş çaptaki uygulamasını sınırlamaktadır. Yüksek yüzey alanına ve iletken doğaya sahip nanokompozit konak malzemeler, kükürt katotlarının stabilitesini iyileştirme potansiyeline sahiptir. Bu çalışmada, MOF’tan türetilmiş heteroatom katkılı karbon (cZIF-67) ve iki boyutlu Ti3C2 MXene malzemeler kullanılarak cZIF-67/Ti3C2 nanokompozitleri üretilmiştir. Üretilen nanokompozitler Li-S bataryalar için kükürt tutucu malzeme olarak kullanıldı. Yapısal ve kimyasal karakterizasyonların ardından S/cZIF-67/Ti3C2 nanokompozit katotlar Li-S bataryalarda kullanılarak performans ilintili özellikleri incelenmiştir. Üretilen S/cZIF-67/Ti3C2 katotlar ile kükürt’ün yalıtkan yapısından ve lityum polisülfitlerden kaynaklanan olumsuz etkiler ortadan kaldırılmıştır.

Proje Numarası

FBG-2021-1703

Kaynakça

  • [1] Yuksel, R., et al., Necklace‐like Nitrogen‐Doped Tubular Carbon 3D Frameworks for Electrochemical Energy Storage. Advanced Functional Materials, 2020. 30(10): p. 1909725.
  • [2] Yuksel, R., et al., Metal-Organic Framework Integrated Anodes for Aqueous Zinc-Ion Batteries. Advanced Energy Materials, 2020. 10(16).
  • [3] Pang, Q., et al., Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy, 2016. 1(9): p. 16132.
  • [4] Huang, L., et al., Electrode Design for Lithium–Sulfur Batteries: Problems and Solutions. Advanced Functional Materials, 2020. 30(22): p. 1910375.
  • [5] Fang, R., et al., More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects. Advanced Materials, 2017. 29(48): p. 1606823.
  • [6] Boyd, D.A., Sulfur and its role in modern materials science. Angewandte Chemie International Edition, 2016. 55(50): p. 15486-15502.
  • [7] Qiu, T., et al., Metal–Organic Framework-Based Materials for Energy Conversion and Storage. ACS Energy Letters, 2020. 5(2): p. 520-532.
  • [8] Rana, M., et al., Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries. Nano Energy, 2020. 75: p. 105009.
  • [9] Ji, X., K.T. Lee, and L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Materials, 2009. 8(6): p. 500-506.
  • [10] Kim, H., et al., Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries. Nature Communications, 2015. 6(1): p. 7278.
  • [11] Seo, S.-D., et al., "Brain-Coral-Like" Mesoporous Hollow CoS2@N-Doped Graphitic Carbon Nanoshells as Efficient Sulfur Reservoirs for Lithium–Sulfur Batteries. Advanced Functional Materials, 2019. 29(38): p. 1903712.
  • [12] Wang, H., et al., Metal-organic frameworks for energy applications. Chem, 2017. 2(1): p. 52-80.
  • [13] Li, G., et al., A microporous carbon derived from metal-organic frameworks for long- life lithium sulfur batteries. International Journal of Energy Research, 2020. 44(3): p. 2126-2136.
  • [14] Guan, B., et al., Blocking Polysulfide with Co2B@ CNT via "Synergetic Adsorptive Effect" toward Ultrahigh-Rate Capability and Robust Lithium–Sulfur Battery. ACS nano, 2019. 13(6): p. 6742-6750.
  • [15] Yuksel, R., et al., Necklace-like Nitrogen-Doped Tubular Carbon 3D Frameworks for Electrochemical Energy Storage. Advanced Functional Materials, 2020. 30(10).
  • [16] Zhao, M., et al., A Perspective toward Practical Lithium–Sulfur Batteries. ACS Central Science, 2020. 6(7): p. 1095-1104.
  • [17] Li, K., et al., 3D MXene Architectures for Efficient Energy Storage and Conversion. Advanced Functional Materials, 2020. 30(47): p. 2000842.
  • [18] Liang, X., A. Garsuch, and L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high‐performance lithium–sulfur batteries. Angewandte Chemie, 2015. 127(13): p. 3979-3983.
  • [19] Zhao, Q., et al., 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium–sulfur batteries. Nanoscale, 2019. 11(17): p. 8442-8448.
  • [20] Naguib, M., et al., Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Advanced Materials, 2011. 23(37): p. 4248-4253.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrokimya, Malzeme Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Recep Yüksel 0000-0001-8178-0165

Proje Numarası FBG-2021-1703
Erken Görünüm Tarihi 27 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 22 Temmuz 2024
Kabul Tarihi 11 Kasım 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Yüksel, R. (2024). Fabrication of cZIF-67/Ti3C2 Nanocomposites As Sulfur Host For Lithium-Sulfur Batteries. Erzincan University Journal of Science and Technology, 17(3), 650-662. https://doi.org/10.18185/erzifbed.1520178