Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 853 - 869, 31.12.2024
https://doi.org/10.18185/erzifbed.1578766

Öz

Proje Numarası

118C549

Kaynakça

  • [1] Yip, N. Y., Brogioli, D., Hamelers, H. V. M., Nijmeijer, K. (2016) Salinity gradients for sustainable energy: primer, progress, and prospects. Environmental Science & Technology, 50 (22), 12072-12094.
  • [2] Logan, B. E., Elimelech, M., (2012) Membrane-based processes for sustainable power generation using water. Nature, 488, 313-319.
  • [3] Ramon, G. Z., Feinberg, B. J., Hoek, E. M. V. (2011) Membrane-based production of salinity gradient power. Energy & Environmental Science, 4, 4423-4434.
  • [4] Weinstein, J. N., Leitz, F. B. (1976) Electric power from differences in salinity: the dialytic battery. Science, 191, 557-559.
  • [5] Veerman, J., Saakes, M., Metz, S. J., Harmsen, G. J. (2010) Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant. Environmental Science & Technology, 44, 9207-9212.
  • [6] Kuleszo, J., Kroeze, C., Post, J., Fekete, B. M. (2010) The potential of blue energy for reducing emissions of CO2 and non-CO2 greenhouse gases. Journal of Integrative Environmental Sciences, 7, 89-96.
  • [7] Długołeçki, P., Antoine, G., Nijmeijer, K., Wessling, M. (2009) Practical potential of reverse electrodialysis as process for sustainable energy generation. Environmental Science & Technology, 43 (17), 6888-6894.
  • [8] Tristan, C., Fallanza, M., Ibanez, R., Ortiz, I. (2020) Recovery of salinity gradient energy in desalination plants by reverse electrodialysis. Desalination, 496, 114699.
  • [9] Tian, H., Wanga, Y., Peia, Y., Crittenden, J. C. (2020) Unique applications and improvements of reverse electrodialysis: A review and outlook. Applied Energy, 262, 114482-114506.
  • [10] Audinos, R. (1983) Electrodialyse inverse. Etude de l'energie electrique obtenue a partir de deux solutions de salinites differentes. Journal of Power Sources, 10, 203-217.
  • [11] Długołecki, P., Nijmeijer, K., Metz, S., Wessling, M. (2008) Current status of ion exchange membranes for power generation from salinity gradients. Journal of Membrane Science, 319, 214-222.
  • [12] Veerman, J., de Jong, R. M., Saakes, M., Metz, S. J., Harmsen, G. J. (2009) Reverse electrodialysis: comparison of six commercial membrane pairs on the thermodynamic efficiency and power density. Journal of Membrane Science, 343, 7-15.
  • [13] Długołecki, P., Ogonowski, P., Metz, S. J., Saakes, M., Nijmeijer, K., Wessling, M. (2010) On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport. Journal of Membrane Science, 349, 369-379.
  • [14] Veerman, J., Saakes, M., Metz, S. J., Harmsen, G. J. (2011) Reverse electrodialysis: a validated process model for design and optimization. Chemical Engineering Journal, 166, 256-268.
  • [15] Vermaas, D. A., Saakes, M., Nijmeijer, K. (2011) Doubled power density from salinity gradients at reduced intermembrane distance. Environmental Science & Technology, 45, 7089-7095.
  • [16] Burheim, O. S., Seland, F., Pharoah, J. G., Kjelstrup, S. (2012) Improved electrode systems for reverse electro-dialysis and electro-dialysis. Desalination, 285, 147-152.
  • [17] Veerman, J., Saakes, M., Metz, S. J., Harmsen, G. J. (2010) Reverse electrodialysis: evaluation of suitable electrode systems. Journal of Applied Electrochemistry, 40, 1461-1474.
  • [18] Vermaas, D. A., Bajracharya, S., Sales, B. B., Saakes, M., Hamelers, B., Nijmeijer, K. (2013) Clean energy generation using capacitive electrodes in reverse electrodialysis. Energy & Environmental Science, 6, 643-651.
  • [19] Tedesco, M., Brauns, E., Cipollina, A., Micale, G., Modica, P., Russo, G., Helsen, J. (2015) Reverse electrodialysis with saline waters and concentrated brines: a laboratory investigation towards technology scale-up. Journal of Membrane Science, 492, 9-20.
  • [20] Pintossi, D., Chen, C-L., Saakes, M., Nijmeijer, K., Borneman, Z. (2020) Influence of sulfate on anion exchange membranes in reverse electrodialysis. npj Clean Water, 3, 29.
  • [21] Vermaas, D. A., Veerman, J., Saakes M., Nijmeijer, K. (2014) Influence of multivalent ions on renewable energy generation in reverse electrodialysis. Energy & Environmental Science, 7, 1434-1445.
  • [22] Pintossi, D., Simoes, C., Saakes, M., Borneman, Z., Nijmeijer, K. (2021) Predicting reverse electrodialysis performance in the presence of divalent ions for renewable energy generation. Energy Conversion and Management, 243, 114369.
  • [23] Vermaas, D. A., Kunteng, D., Saakes, M., Nijmeijer, K. (2013) Fouling in reverse electrodialysis under natural conditions. Water Research, 47, 1289-1298.
  • [24] https://www.sefar.com/en/, 01.10.2024.
  • [25] Jang, J., Kang, Y., Han, J. H., Jang, K., Kim, C. M., Kim, I. S. (2020) Developments and future prospects of reverse electrodialysis for salinity gradient power generation: Influence of ion exchange membranes and electrodes. Desalination, 491, 114540.
  • [26] Emdadi, A., Hestekin, J., Greenlee, L. F. (2021) Salt screening analysis for reverse electrodialysis. Sustainable Energy & Fuels, 5, 6135-6144.
  • [27] Golubenko, D. V., Van der Bruggen, B., Yaroslavtsev, A. B. (2021) Ion exchange membranes based on radiation-induced grafted functionalized polystyrene for high-performance reverse electrodialysis. Journal of Power Sources, 511, 230460.
  • [28] Vermaas, D. A., Guler, E., Saakes, M., Nijmeijer, K. (2012) Theoretical power density from salinity gradients using reverse electrodialysis. Energy Procedia, 20, 170-184.
  • [29] Altıok, E., Kaya, T. Z., Güler, E., Kabay, N., Bryjak, M. (2021) Performance of reverse electrodialysis system for salinity gradient energy generation by using a commercial ion exchange membrane pair with homogeneous bulk structure. Water, 13, 814.
  • [30] Vital, B., Torres, E. V., Sleutels, T., Gagliano, M. C., Saakes, M., Hamelers, H. V. M. (2021) Fouling fractionation in reverse electrodialysis with natural feed waters demonstrates dual media rapid filtration as an effective pre-treatment for fresh water. Desalination, 518, 115277.

Investigation of Influencing Factors on Power Generation Performance in Reverse Electrodialysis

Yıl 2024, , 853 - 869, 31.12.2024
https://doi.org/10.18185/erzifbed.1578766

Öz

The importance of meeting energy demands from renewable sources is growing daily. Reverse electrodialysis (RED) is a membrane-based technology that produces energy using electrolyte solutions with different salinities. This study has generated energy from the RED system using the commercial Fujifilm Type II ion exchange membranes (IEMs). Many parameters affect the power generation performance of the RED system. This study systematically investigated the parameters, the presence of divalent ions and organic molecules, the electrolyte solution concentration, and the flow velocity. The flow velocity results indicated that energy efficiency increased with increasing flow velocity of the electrolyte solutions. The presence of divalent ions created uphill transport. The results showed that increasing the mole ratio of divalent ions in the feed electrolyte solutions dramatically decreased the RED system performance due to increasing resistances. The organic fouling test of the anion exchange membranes (AEMs) was carried out using a real humic and fulvic acid mixture under static conditions. The results indicated that fouling layers formed in the AEMs structure, and these layers decreased by 30% of RED performance. Lastly, the RED system's long-term performance was tested for 4 hours at a constant current density of 8 A/m2 before and after AEM fouling experiments. The results revealed the fouling layers severely reduced the power generation performance of the RED system.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

118C549

Kaynakça

  • [1] Yip, N. Y., Brogioli, D., Hamelers, H. V. M., Nijmeijer, K. (2016) Salinity gradients for sustainable energy: primer, progress, and prospects. Environmental Science & Technology, 50 (22), 12072-12094.
  • [2] Logan, B. E., Elimelech, M., (2012) Membrane-based processes for sustainable power generation using water. Nature, 488, 313-319.
  • [3] Ramon, G. Z., Feinberg, B. J., Hoek, E. M. V. (2011) Membrane-based production of salinity gradient power. Energy & Environmental Science, 4, 4423-4434.
  • [4] Weinstein, J. N., Leitz, F. B. (1976) Electric power from differences in salinity: the dialytic battery. Science, 191, 557-559.
  • [5] Veerman, J., Saakes, M., Metz, S. J., Harmsen, G. J. (2010) Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant. Environmental Science & Technology, 44, 9207-9212.
  • [6] Kuleszo, J., Kroeze, C., Post, J., Fekete, B. M. (2010) The potential of blue energy for reducing emissions of CO2 and non-CO2 greenhouse gases. Journal of Integrative Environmental Sciences, 7, 89-96.
  • [7] Długołeçki, P., Antoine, G., Nijmeijer, K., Wessling, M. (2009) Practical potential of reverse electrodialysis as process for sustainable energy generation. Environmental Science & Technology, 43 (17), 6888-6894.
  • [8] Tristan, C., Fallanza, M., Ibanez, R., Ortiz, I. (2020) Recovery of salinity gradient energy in desalination plants by reverse electrodialysis. Desalination, 496, 114699.
  • [9] Tian, H., Wanga, Y., Peia, Y., Crittenden, J. C. (2020) Unique applications and improvements of reverse electrodialysis: A review and outlook. Applied Energy, 262, 114482-114506.
  • [10] Audinos, R. (1983) Electrodialyse inverse. Etude de l'energie electrique obtenue a partir de deux solutions de salinites differentes. Journal of Power Sources, 10, 203-217.
  • [11] Długołecki, P., Nijmeijer, K., Metz, S., Wessling, M. (2008) Current status of ion exchange membranes for power generation from salinity gradients. Journal of Membrane Science, 319, 214-222.
  • [12] Veerman, J., de Jong, R. M., Saakes, M., Metz, S. J., Harmsen, G. J. (2009) Reverse electrodialysis: comparison of six commercial membrane pairs on the thermodynamic efficiency and power density. Journal of Membrane Science, 343, 7-15.
  • [13] Długołecki, P., Ogonowski, P., Metz, S. J., Saakes, M., Nijmeijer, K., Wessling, M. (2010) On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport. Journal of Membrane Science, 349, 369-379.
  • [14] Veerman, J., Saakes, M., Metz, S. J., Harmsen, G. J. (2011) Reverse electrodialysis: a validated process model for design and optimization. Chemical Engineering Journal, 166, 256-268.
  • [15] Vermaas, D. A., Saakes, M., Nijmeijer, K. (2011) Doubled power density from salinity gradients at reduced intermembrane distance. Environmental Science & Technology, 45, 7089-7095.
  • [16] Burheim, O. S., Seland, F., Pharoah, J. G., Kjelstrup, S. (2012) Improved electrode systems for reverse electro-dialysis and electro-dialysis. Desalination, 285, 147-152.
  • [17] Veerman, J., Saakes, M., Metz, S. J., Harmsen, G. J. (2010) Reverse electrodialysis: evaluation of suitable electrode systems. Journal of Applied Electrochemistry, 40, 1461-1474.
  • [18] Vermaas, D. A., Bajracharya, S., Sales, B. B., Saakes, M., Hamelers, B., Nijmeijer, K. (2013) Clean energy generation using capacitive electrodes in reverse electrodialysis. Energy & Environmental Science, 6, 643-651.
  • [19] Tedesco, M., Brauns, E., Cipollina, A., Micale, G., Modica, P., Russo, G., Helsen, J. (2015) Reverse electrodialysis with saline waters and concentrated brines: a laboratory investigation towards technology scale-up. Journal of Membrane Science, 492, 9-20.
  • [20] Pintossi, D., Chen, C-L., Saakes, M., Nijmeijer, K., Borneman, Z. (2020) Influence of sulfate on anion exchange membranes in reverse electrodialysis. npj Clean Water, 3, 29.
  • [21] Vermaas, D. A., Veerman, J., Saakes M., Nijmeijer, K. (2014) Influence of multivalent ions on renewable energy generation in reverse electrodialysis. Energy & Environmental Science, 7, 1434-1445.
  • [22] Pintossi, D., Simoes, C., Saakes, M., Borneman, Z., Nijmeijer, K. (2021) Predicting reverse electrodialysis performance in the presence of divalent ions for renewable energy generation. Energy Conversion and Management, 243, 114369.
  • [23] Vermaas, D. A., Kunteng, D., Saakes, M., Nijmeijer, K. (2013) Fouling in reverse electrodialysis under natural conditions. Water Research, 47, 1289-1298.
  • [24] https://www.sefar.com/en/, 01.10.2024.
  • [25] Jang, J., Kang, Y., Han, J. H., Jang, K., Kim, C. M., Kim, I. S. (2020) Developments and future prospects of reverse electrodialysis for salinity gradient power generation: Influence of ion exchange membranes and electrodes. Desalination, 491, 114540.
  • [26] Emdadi, A., Hestekin, J., Greenlee, L. F. (2021) Salt screening analysis for reverse electrodialysis. Sustainable Energy & Fuels, 5, 6135-6144.
  • [27] Golubenko, D. V., Van der Bruggen, B., Yaroslavtsev, A. B. (2021) Ion exchange membranes based on radiation-induced grafted functionalized polystyrene for high-performance reverse electrodialysis. Journal of Power Sources, 511, 230460.
  • [28] Vermaas, D. A., Guler, E., Saakes, M., Nijmeijer, K. (2012) Theoretical power density from salinity gradients using reverse electrodialysis. Energy Procedia, 20, 170-184.
  • [29] Altıok, E., Kaya, T. Z., Güler, E., Kabay, N., Bryjak, M. (2021) Performance of reverse electrodialysis system for salinity gradient energy generation by using a commercial ion exchange membrane pair with homogeneous bulk structure. Water, 13, 814.
  • [30] Vital, B., Torres, E. V., Sleutels, T., Gagliano, M. C., Saakes, M., Hamelers, H. V. M. (2021) Fouling fractionation in reverse electrodialysis with natural feed waters demonstrates dual media rapid filtration as an effective pre-treatment for fresh water. Desalination, 518, 115277.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Aydın Cihanoğlu 0000-0003-3401-2416

Proje Numarası 118C549
Erken Görünüm Tarihi 27 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 4 Kasım 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Cihanoğlu, A. (2024). Investigation of Influencing Factors on Power Generation Performance in Reverse Electrodialysis. Erzincan University Journal of Science and Technology, 17(3), 853-869. https://doi.org/10.18185/erzifbed.1578766