Yasadışı Maddelerin Tespı̇tı̇ içı̇n Aptamer Tabanlı Elektrokı̇myasal Sensörler: Son On Yılın Adlı̇ Uygulamaları
Yıl 2025,
Cilt: 18 Sayı: 2, 505 - 520, 31.08.2025
Ezgi Emen
,
Fatma Nil Ersoy Ertaş
,
Pınar Kara Kadayıfçılar
,
Serap Akgur
Öz
Bu kısma makalenizin Türkçe özetini yerleştirmeniz gerekmektedir. Öz, 10 punto büyüklüğünde, iki yana yaslı ve 250 sözcüğü geçmeyecek (500-1000 karakter) şekilde yazılmalıdır.
Dünyada yasadışı maddelerin kullanımı toplumların güvenliğini tehdit eden küresel bir sorun olarak karşımıza çıkmaktadır. Yasadışı maddelerin ve biyolojik materyallerdeki ilgili metabolitlerini hızlı ve güvenilir bir şekilde taramak için çeşitli seçici tekniklere ihtiyaç duyulmaktadır. Biyosensörler, biyolojik tanıma unsurlarını dönüştürücülerle birleştiren entegre cihazlardır. Aptasensörler, hedef moleküllere olağanüstü özgüllükleri ve yüksek bağlanma afiniteleri ile bilinen aptamer tabanlı afinite biyosensörleridir ve sağlık, gıda, çevre ve adli uygulamalar alanında önemli ilerlemeler sağlamaktadır. Birçok aptasensör geleneksel immünokimyasal aptamer ile neredeyse aynıdır ve aptamerler antikorlara benzerler. Elektrokimyasal aptasensörler, elektrokimyasal transdüksiyon ile entegre edilmiş biyolojik tanıma için aptamerlerdir.
Son on yılda esrar, opioidler ve amfetamin türevleri de dahil olmak üzere yasadışı maddelerin tespiti için elektrokimyasal aptamerlerin kullanımı üzerine yapılan son gelişmeler bu çalışmada tartışılmaktadır. Bu çalışma, mevcut teknolojileri ve zorlukları sunmayı ve literatürde ele alınabilecek boşlukları vurgulamayı amaçlamaktadır. Bu derleme, POC (Point of Care) uygulamaları için aptasensörlerin hassasiyetini, seçiciliğini ve uygulanabilirliğini artırmak için daha fazla araştırma ve geliştirme ihtiyacını vurgulamaktadır.
Kaynakça
-
1] UNODC World Drug Report (2024) : Harms of world drug problem continue to mount amid expansions in drug use and markets. https://www.unodc.org/unodc/en/press/releases/2024 (Access date: 10.01.2024)
-
[2] UNODC United Nations Office of Drug Control, Special Points (2023) World Drug Report: Key Messages, https://www.unodc.org/unodc/ (Access date: 10.01.2024)
-
[3] UNODC, Executive summary, World Drug Report, (2023). https://www.unodc.org/unodc (Access date: 10.01.2024)
-
[4] EUDA, European Drug Report (2024) Trends and Developments, https://www.euda.europa.eu (Access date: 10.01.2024)
-
[5] Turkish Monitoring Center for Drugs and Drugs Addiction, Turkish Drug Report (2024) https://www.narkotik.pol.tr (Access date: 10.01.2024)
-
[6] Ünübol, H., Sayar, G.H. (2019) Türkiye Bağımlılık Risk Profili ve Ruh Sağlığı Haritası Proje Sonuç Raporu. https://www.researchgate.net/publication/350430194 (Access date: 10.01.2024)
-
[7] Daglioglu, N., Guzel, E.Y., Atasoy, A., Gören, İ.E. (2021) Comparison of community illicit drug use in 11 cities of Turkey through wastewater-based epidemiology, Environ. Sci. Pollut. Res. 28: 15076–15089. https://doi.org/10.1007/s11356-020-11404-9.
-
[8] Dağlıoğlu, N., Atasoy Aydın A., Yavuz Güzel, E., Ertas, B.S. (2024) Wastewater Analysis of Illicit Substances as a Means of Detecting Substance Abuse, Proc. Panel “Effective Drug Control Strateg. North. Cyprus Challenges Oppor. 2024”, 15-17 April 2024, Kyrenia, North. Cyprus. 1: 5–15. https://doi.org/10.70020/ehass.2024.7.2.
-
[9] Aktaş, A., Akgür, S.A. (2022) Drinking, drug use and road rage in Turkish drivers, Transp. Res. Part F Traffic Psychol. Behav. 89: 16–28. https://doi.org/10.1016/j.trf.2022.06.012.
-
[10] WHO, A Road Safety Technical Package (2017) http://iris.paho.org/xmlui/bitstream/ (Access date: 10.01.2024)
-
[11] WHO, World Health Organization, Top 10 Causes Death. (2021) https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
-
[12] EWDTS, Workplace Drug Testing (2022) Https://www.ewdts.org/wp-content (Access date: 10.01.2024)
-
[13] EMCDDA, Driving Under the Influence of Drugs, Alcohol and Medicines in Europe — findings from the DRUID project (2012).
https://op.europa.eu/en/publication (Access date: 10.01.2024)
-
[14] National Strategy Document and Action Plan for Combating Drugs in Turkey, 2024-2028. https://bmyk.gov.tr (Access date: 10.01.2024)
-
[15] Grapp, M., Kaufmann, C., Streit, F., Binder, L. (2018) Systematic forensic toxicological analysis by liquid-chromatography-quadrupole-time-of-flight mass spectrometry in serum and comparison to gas chromatography-mass spectrometry, Forensic Science International, 287: 63-73 https://doi.org/10.1016/j.forsciint.2018.03.039
-
[16] Soni, S., Jain, U., Burke, D.H., Chauhan, N. (2022) Development of Nanomaterial-Modified Impedimetric Aptasensor — A Single-Step Strategy for 3,4-Methylenedioxymethyl amphetamine Detection, Biosensors 12(7): 538, https://doi.org/10.3390/bios12070538
-
[17] Hianik, T., Wang, J. (2009) Electrochemical aptasensors - recent achievements and perspectives, Electroanalysis, 21:1223–1235. https://doi.org/10.1002/elan.200904566
-
[18] Cai, H., Lee, T.M.H., Hsing, I.M. (2006) Label-free protein recognition using an aptamer-based impedance measurement assay, Sensors Actuators, B Chem. 114: 433–437. https://doi.org/10.1016/j.snb.2005.06.017.
-
[19] Liss, M., Petersen, B., Wolf, H., Prohaska, E. (2002) An aptamer-based quartz crystal protein biosensor, Anal. Chem. 74: 4488–4495. https://doi.org/10.1021/ac011294p
-
[20] Çelikbaş, E., Balaban, S., Evran, S., Coskunol, H., Timur, S. (2019) A bottom-up approach for developing aptasensors for abused drugs: Biosensors in forensics, Biosensors. Biosensors (Basel) 9(4):118, https://doi.org/10.3390/bios9040118.
-
[21] Zhang, S., Wright, G., Yang, Y. (2000) Materials and techniques for electrochemical biosensor design and construction, Biosensors and Bioelectronics. 15:273–282. https://doi.org/10.1016/S0956-5663(00)00076-2.
-
[22] Randviir, E.P., Banks, C.E. (2013) Electrochemical impedance spectroscopy: an overview of bioanalytical applications, Analytical Methods, 5, 1098, https://doi.org/10.1039/C3AY26476A
-
[23] Taleat, Z., Khoshroo, A., Mazloum-Ardakani, M. (2014) Screen-printed electrodes for biosensing: A review (2008-2013), Microchim. Acta. 181: 865–891. https://doi.org/10.1007/s00604-014-1181-1.
-
[24] Guzman, N.A., Guzman, D.E., Blanc, T. (2023) Advancements in Portable Instruments Based on Affinity-Capture-Migration and Affinity-Capture-Separation for Use in Clinical Testing and Life Science Applications, J. Chromatogr. A, 464109 https://doi.org/10.1016/j.chroma.2023.464109
-
[25] Mao, K., Zhang, H., Pan, Y., Zhang, K., Cao, H., Li, X., Yang, Z. (2020) Nanomaterial-based aptamer sensors for analysis of illicit drugs and evaluation of drugs consumption for Wastewater-Based Epidemiology, Trends in Analytical Chemistry 130: 115975 https://doi.org/10.1016/j.trac.2020.115975).
-
[26] Naresh, V., Lee, N. (2021) A review on biosensors and recent development of nanostructured materials-enabled biosensors, Sensors, 21:1–35. https://doi.org/10.3390/s21041109.
-
[27] Soni, S., Jain, U., Burke, D.H., Chauhan, N. (2022) Recent trends and emerging strategies for aptasensing technologies for illicit drugs detection, J of Electroanal. Chem 910:116128 https://doi.org/10.1016/j.jelechem.2022.116128
-
[28] Xie, Y., Lin, J.H., Chen, L.Y., Feng, L., Chen, Z.M., Zheng, J.X., Qin, S.N., Li, G.W., Salminen, K., Sun, J.J. (2023) Rapid nanomolar detection of ketamine in biofluids based on electrochemical aptamer-based sensor for drugged driving screening within 30 s, Sensors Actuators B Chem. 390: 133903. https://doi.org/10.1016/j.snb.2023.133903.
-
[29] H. Stevenson, A. Bacon, K.M. Joseph, W.R.W. Gwandaru, A. Bhide, D. Sankhala, V.N. Dhamu, S. Prasad, A Rapid Response Electrochemical Biosensor for Detecting Thc In Saliva, Sci. Rep. 9 (2019) 1–11. https://doi.org/10.1038/s41598-019-49185-y.
-
[30] Suraev, A., McCartney, D., Kevin, R. Gordon, R., Grunstein, R.R., Hoyos, C.M., McGregor, I.S. (2024) Detection of Δ9 -tetrahydrocannabinol (THC) in oral fluid using two point-of-collection testing devices following oral administration of a THC and cannabidiol containing oil, Drug Test. Anal. 16:1-1592, https://doi.org/10.1002/DTA.3658.
-
[31] Lachenmeier, D.W., Habel, S., Fischer, B., Herbi, F., Zerbe, Y., Bock, V., Rajcic de Rezende, T., Walch, S.G., Sproll, C. (2023) Are adverse effects of cannabidiol (CBD) products caused by tetrahydrocannabinol (THC) contamination?, F1000Research. 8:1394 DOI: 10.12688/f1000research.19931.7
-
[32] Amini, K., Sepehrifard, A., Valinasabpouri, A., Safruk, J., Angelone, D., de Campos Lourenco, T., Recent advances in electrochemical sensor technologies for THC detection—a narrative review, Journal of Cannabis Research, https://doi.org/10.1186/s42238-022-00122-3
-
[33] Substance Abuse and Mental Health Services Administration, (SAMSHA), SAMSHA Analytes and Their Cut-offs, (2023) https://www.federalregister.gov (Access date: 10.01.2024)
-
[34] Stevenson, H., Bacon, A., Joseph, K.M., Gwandaru, W.R.W., Bhide, A., Sankhala, D., Dhamu, V.N., Prasad, S. (2019) A Rapid Response Electrochemical Biosensor for Detecting THC In Saliva, Sci. Rep. 9: 1–11. https://doi.org/10.1038/s41598-019-49185-y.
-
[35] Tlili amal, M. Souiri, W. Douki, A. Othmane, H. Saadaoui, (2018) Development of an electrochemical biosensor for ∆9-tetrahydrocannabinol detection based on gold surfaces functionalized with self-assembled monolayers, Proceedings of MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition, 01:5893. https://doi.org/10.3390/mol2net-04-05893.
-
[36] Lu, D., Lu, F., Pang, G. (2016) A novel tetrahydrocannabinol electrochemical nano immunosensor based on horseradish peroxidase and Double-Layer gold nanoparticles, Molecules, 21(10): 1377 https://doi.org/10.3390/molecules21101377.
-
[37] Harpaz, D., Bernstein, N., Namdar, D., Eltzov, E. (2022) Portable biosensors for rapid on-site determination of cannabinoids in cannabis, a review, Biotechnology Advances 61: 108031 10.1016/j.biotechadv.2022.108031
-
[38] Xiao, Y., Yu, H., Luo, Y., Alkhamis, O., Canoura, J., Yu, B (2021) Isolation of natural DNA aptamers for challenging small-molecule targets, cannabinoids, Anal. Chem. 93: 3172–3180. https://doi.org/10.1021/acs.analchem.0c04592.
-
[39] Kekedy-Nagy, L., Perry, J.M., Little, S.R., Llorens, O.Y., Shih, S.C.C. (2023) An electrochemical aptasensor for Δ9-tetrahydrocannabinol detection in saliva on a microfluidic platform, Biosensors and Bioelectronics 222: 114998 https://doi.org/10.1016/j.bios.2022.114998
-
[40] Xie,Y., She,J.P., Zheng,J.X., Salminen, K., Sun, J.J. (2024) Rapid nanomolar detection of Δ9-tetrahydrocannabinol in biofluids via electrochemical aptamer-based biosensor, Analytica Chimica Acta 1295:342304 https://doi.org/10.1016/j.aca.2024.342304
-
[41] Mao, K.,Yang, Z., Li, J., Zhou,X., Li,X.,Hu,J. (2017) A novel colorimetric biosensor based on non-aggregated Au@Ag core–shell nanoparticles for methamphetamine and cocaine detection, Talanta. 175 338–346. https://doi.org/10.1016/j.talanta.2017.07.011.
-
[42] Emniyet Genel Müdürlüğü, Turkey Drug Report, (2021) 1–140. http://www.narkotik.pol.tr (Access date: 10.01.2024)
-
[43] Dragan, A.M., Parrilla, M., Feier, B.,Oprean,R., Cristea,C., De Wael, K. (2021) Analytical techniques for the detection of amphetamine-type substances in different matrices: A comprehensive review, Trends in Analytical Chemistry 145:116447 https://doi.org/10.1016/j.trac.2021.116447
-
[44] Cumba, L.R., Smith, J.P., Zuway, K.Y., Sutcliffe, O.B., Do Carmo, D.R., Banks, C.E. (2016) Forensic electrochemistry: Simultaneous voltammetric detection of MDMA and its fatal counterpart “dr Death” Anal. Methods. 8:142–152. https://doi.org/10.1039/c5ay02924d
-
[45] Haghighi, M., Shahlaei, M., Irandoust, M., Hassanpour, A. (2020) New and sensitive sensor for voltammetry determination of Methamphetamine in biological samples, J. Mater. Sci. Mater. Electron. 31:10989–11000. https://doi.org/10.1007/s10854-020-03647-6.
-
[46] Lee, K., Saisahas, K., Soleh, A., Kunalan,V., Chang, K.H., Limbut, W., Abdullah, A.F.L. (2022) Forensic Electrochemistry: Electrochemical Analysis of Trace Methamphetamine Residues on Household Surfaces, J. Electrochem. Soc. 169:56514. https://doi.org/10.1149/1945-7111/ac6c4f.
-
[47] Bartlett,C.A.,Taylor,S.,Fernandez,C.,Wanklyn,C.,Burton, D., Enston, E., Raniczkowska, A., Black, M., Murphy, L. (2016) Disposable screen printed sensor for the electrochemical detection of methamphetamine in undiluted saliva, Chem. Cent. J. 10:1–9. https://doi.org/10.1186/s13065-016-0147-2.
-
[48] Atik, G., Kılıç, N.M., Horzum, N., Odacı, D., Timur, S. (2023) Antibody-Conjugated Electrospun Nanofibers for Electrochemical Detection of Methamphetamine, ACS Appl. Mater. Interfaces. 15:24109–24119. https://doi.org/10.1021/acsami.3c02266.
-
[49] Soni,S.,Jain,U., Burke,D.H., Chauhan,N. (2022) A label free, signal off electrochemical aptasensor for amphetamine detection, Surfaces and Interfaces 31:102023. https://doi.org/10.1016/j.surfin.2022.102023
-
[50] Xie, Y., Wu,S., Chen,Z., Jiang,J., Sun,J. (2022) Rapid nanomolar detection of methamphetamine in biofluids via a reagentless electrochemical aptamer-based biosensor, Anal. Chim. Acta. 1207:339742. https://doi.org/10.1016/j.aca.2022.339742.
-
[51] Chang, W., Zheng, Z.,Ma,Y., Du,Y., Shi,X.,Wang,C. (2024) An electrochemical aptasensor for methylamphetamine rapid detection by single-on mode based on competition with complementary DNA, Sci. Rep. 14:1–12. https://doi.org/10.1038/s41598-024-59505-6.
-
[52] Liu,H. (2024) Highly selective detection of methamphetamine in urine using biosynthesized graphene oxide-gold nanoparticle composite modified electrodes, International Journal of Electrochemical Science 19:100851. https://doi.org/10.1016/j.ijoes.2024.100851
-
[53] DEA, Drug Enforcement Administration, (2022) Drug Fact Sheet, Cocaine, https://www.dea.gov/sites (Access date: 10.01.2024)
-
[54] Stojanovic, M., Prada, P.N., Landry, D.W. (2001) Aptamer-Based Folding Fluorescent Sensor for Cocaine, Journal of the American Chemical Society, 123:21 https://doi.org/10.1021/ja0038171
-
[55] Roushani, M., Shahdost-Fard,F. (2015) A highly selective and sensitive cocaine aptasensor based on covalent attachment of the aptamer-functionalized AuNPs onto nanocomposite as the support platform, Anal. Chim. Acta. 853:214–221. https://doi.org/10.1016/j.aca.2014.09.031.
-
[56] Roushani,M., Shahdost-Fard,F. (2015) A novel ultrasensitive aptasensor based on silver nanoparticles measured via enhanced voltammetric response of electrochemical reduction of riboflavin as redox probe for cocaine detection, Sensors Actuators, B Chem. 207:764–771. https://doi.org/10.1016/j.snb.2014.10.131.
[57] Roushani,M., Shahdost-Fard,F. (2016) An aptasensor for voltammetric and impedimetric determination of cocaine based on a glassy carbon electrode modified with platinum nanoparticles and using rutin as a redox probe, Microchim. Acta. 183:185–193. https://doi.org/10.1007/s00604-015-1604-7.
-
[58] Shahdost-Fard, F., Roushani,M. (2016) Conformation switching of an aptamer based on cocaine enhancement on a surface of modified GCE, Talanta. 154:7–14. https://doi.org/10.1016/j.talanta.2016.03.055.
-
[59] Taghdisi, S.M., Danesh, N.M., Emrani, A.S., Ramezani, M., Abnous, K. (2015) A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine, Biosensors and Bioelectronics 73:245-250 https://doi.org/10.1016/j.bios.2015.05.065
-
[60] Hashemi, P., Bagheri,H., Afkhami,A., Ardakani,Y.H.,Madrakian, T. (2017) Fabrication of a novel aptasensor based on three-dimensional reduced graphene oxide/polyaniline/gold nanoparticle composite as a novel platform for high sensitive and specific cocaine detection, Anal. Chim. Acta. 996:10–19. https://doi.org/10.1016/j.aca.2017.10.035.
-
[61] Tavakkoli,N., Soltani,N., Mohammadi,F. (2019) A nanoporous gold-based electrochemical aptasensor for sensitive detection of cocaine, RSC Adv. 9:14296–14301. https://doi.org/10.1039/c9ra01292c.
-
[62] European Food Safety Authority, (2011) Scientific Opinion on the risks for public health related to the presence of opium alkaloids in poppy seeds, EFSA J. 9:1–150. https://doi.org/10.2903/j.efsa.2011.2405.
-
[63] Report of the International Narcotics Control Board, (2022) https://www.un-ilibrary.org/content/books (Access date: 10.01.2024)
-
[64] Garrido, J.M.P.J., Delerue-Matos, C., Borges, F., Macedo, T.R.A., Oliveira-Brett, A.M. (2004) Voltammetric oxidation of drugs of abuse III. Heroin and metabolites, Electroanalysis. 16:1497–1502. https://doi.org/10.1002/elan.200302975.
-
[65] Abraham, P., Vijayan, R. S. P., Sreevalsan, N. V. K., Anithakumary, V. (2020) Review on the Progress in Electrochemical Detection of Morphine Based on Different Modified Electrodes, J. Electrochem. Soc. 167:037559. https://doi.org/10.1149/1945-7111/ab6cf6
-
[66] Ensafi, A.A.,Heydari-Bafrooei,E.,Rezaei,B. (2013) Different interaction of codeine and morphine with DNA: A concept for simultaneous determination, Biosens. Bioelectron. 41:627–633. https://doi.org/10.1016/j.bios.2012.09.039.
-
[67] Cromartie, R.L. PhD Thesis, (2021) Aptamer-based Voltammetric Biosensing for the detection of Codeine and Fentanyl in Sweat and Saliva, https://doi.org/10.1039/C8AY02080A
-
[68] Zhang, H., Jiang, B., Xiang, Y., Zhang, Y., Chai, Y., Yuan, R. (2011) Aptamer/quantum dot-based simultaneous electrochemical detection of multiple small molecules, Anal. Chim. Acta. 688:99–103. https://doi.org/10.1016/j.aca.2010.12.017.
-
[69] Talemi, R.P., Mashhadizadeh, M.H. (2015) A novel morphine electrochemical biosensor based on intercalative and electrostatic interaction of morphine with double strand DNA immobilized onto a modified Au electrode, Talanta 131:460–466. https://doi.org/10.1016/j.talanta.2014.08.009.
-
[70] Azadbakht, A., Abbasi, A.R., (2019) Engineering an aptamer-based recognition sensor for electrochemical opium alkaloid biosensing, J. Mater. Sci. Mater. Electron. 30:3432–3442. https://doi.org/10.1007/s10854-018-00618-w.
APTAMER-BASED ELECTROCHEMICAL SENSORS FOR ILLICIT DRUG DETECTION: FORENSIC APPLICATIONS IN THE LAST DECADE YEARS
Yıl 2025,
Cilt: 18 Sayı: 2, 505 - 520, 31.08.2025
Ezgi Emen
,
Fatma Nil Ersoy Ertaş
,
Pınar Kara Kadayıfçılar
,
Serap Akgur
Öz
Illicit drugs are a global problem, and a variety of selective techniques are urgently needed to detect drugs of interest. Biosensors are integrated devices that combine biological recognition elements with transducers. Aptasensors are aptamer-based affinity biosensors, which are known for their exceptional specificity and high binding affinity to target molecules, and are providing significant advancements in the field of health, food, environmental, and forensic applications. Many aptasensors are nearly identical to conventional immunochemical aptamer, and aptamers are analogous to antibodies. Electrochemical aptasensors are aptamer for biological recognition integrated with electrochemical transduction.
Recent studies on the use of electrochemical aptasensors for the detection of illicit drugs, including cannabis, opioids and amphetamine derivatives, in the last decade are discussed in this section. This section aims to present current technologies and challenges, and highlights gaps in the literature that can be addressed. This review emphasises the need for further research and development to improve the sensitivity, selectivity and applicability of aptasensors for point-of-care applications.
Kaynakça
-
1] UNODC World Drug Report (2024) : Harms of world drug problem continue to mount amid expansions in drug use and markets. https://www.unodc.org/unodc/en/press/releases/2024 (Access date: 10.01.2024)
-
[2] UNODC United Nations Office of Drug Control, Special Points (2023) World Drug Report: Key Messages, https://www.unodc.org/unodc/ (Access date: 10.01.2024)
-
[3] UNODC, Executive summary, World Drug Report, (2023). https://www.unodc.org/unodc (Access date: 10.01.2024)
-
[4] EUDA, European Drug Report (2024) Trends and Developments, https://www.euda.europa.eu (Access date: 10.01.2024)
-
[5] Turkish Monitoring Center for Drugs and Drugs Addiction, Turkish Drug Report (2024) https://www.narkotik.pol.tr (Access date: 10.01.2024)
-
[6] Ünübol, H., Sayar, G.H. (2019) Türkiye Bağımlılık Risk Profili ve Ruh Sağlığı Haritası Proje Sonuç Raporu. https://www.researchgate.net/publication/350430194 (Access date: 10.01.2024)
-
[7] Daglioglu, N., Guzel, E.Y., Atasoy, A., Gören, İ.E. (2021) Comparison of community illicit drug use in 11 cities of Turkey through wastewater-based epidemiology, Environ. Sci. Pollut. Res. 28: 15076–15089. https://doi.org/10.1007/s11356-020-11404-9.
-
[8] Dağlıoğlu, N., Atasoy Aydın A., Yavuz Güzel, E., Ertas, B.S. (2024) Wastewater Analysis of Illicit Substances as a Means of Detecting Substance Abuse, Proc. Panel “Effective Drug Control Strateg. North. Cyprus Challenges Oppor. 2024”, 15-17 April 2024, Kyrenia, North. Cyprus. 1: 5–15. https://doi.org/10.70020/ehass.2024.7.2.
-
[9] Aktaş, A., Akgür, S.A. (2022) Drinking, drug use and road rage in Turkish drivers, Transp. Res. Part F Traffic Psychol. Behav. 89: 16–28. https://doi.org/10.1016/j.trf.2022.06.012.
-
[10] WHO, A Road Safety Technical Package (2017) http://iris.paho.org/xmlui/bitstream/ (Access date: 10.01.2024)
-
[11] WHO, World Health Organization, Top 10 Causes Death. (2021) https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
-
[12] EWDTS, Workplace Drug Testing (2022) Https://www.ewdts.org/wp-content (Access date: 10.01.2024)
-
[13] EMCDDA, Driving Under the Influence of Drugs, Alcohol and Medicines in Europe — findings from the DRUID project (2012).
https://op.europa.eu/en/publication (Access date: 10.01.2024)
-
[14] National Strategy Document and Action Plan for Combating Drugs in Turkey, 2024-2028. https://bmyk.gov.tr (Access date: 10.01.2024)
-
[15] Grapp, M., Kaufmann, C., Streit, F., Binder, L. (2018) Systematic forensic toxicological analysis by liquid-chromatography-quadrupole-time-of-flight mass spectrometry in serum and comparison to gas chromatography-mass spectrometry, Forensic Science International, 287: 63-73 https://doi.org/10.1016/j.forsciint.2018.03.039
-
[16] Soni, S., Jain, U., Burke, D.H., Chauhan, N. (2022) Development of Nanomaterial-Modified Impedimetric Aptasensor — A Single-Step Strategy for 3,4-Methylenedioxymethyl amphetamine Detection, Biosensors 12(7): 538, https://doi.org/10.3390/bios12070538
-
[17] Hianik, T., Wang, J. (2009) Electrochemical aptasensors - recent achievements and perspectives, Electroanalysis, 21:1223–1235. https://doi.org/10.1002/elan.200904566
-
[18] Cai, H., Lee, T.M.H., Hsing, I.M. (2006) Label-free protein recognition using an aptamer-based impedance measurement assay, Sensors Actuators, B Chem. 114: 433–437. https://doi.org/10.1016/j.snb.2005.06.017.
-
[19] Liss, M., Petersen, B., Wolf, H., Prohaska, E. (2002) An aptamer-based quartz crystal protein biosensor, Anal. Chem. 74: 4488–4495. https://doi.org/10.1021/ac011294p
-
[20] Çelikbaş, E., Balaban, S., Evran, S., Coskunol, H., Timur, S. (2019) A bottom-up approach for developing aptasensors for abused drugs: Biosensors in forensics, Biosensors. Biosensors (Basel) 9(4):118, https://doi.org/10.3390/bios9040118.
-
[21] Zhang, S., Wright, G., Yang, Y. (2000) Materials and techniques for electrochemical biosensor design and construction, Biosensors and Bioelectronics. 15:273–282. https://doi.org/10.1016/S0956-5663(00)00076-2.
-
[22] Randviir, E.P., Banks, C.E. (2013) Electrochemical impedance spectroscopy: an overview of bioanalytical applications, Analytical Methods, 5, 1098, https://doi.org/10.1039/C3AY26476A
-
[23] Taleat, Z., Khoshroo, A., Mazloum-Ardakani, M. (2014) Screen-printed electrodes for biosensing: A review (2008-2013), Microchim. Acta. 181: 865–891. https://doi.org/10.1007/s00604-014-1181-1.
-
[24] Guzman, N.A., Guzman, D.E., Blanc, T. (2023) Advancements in Portable Instruments Based on Affinity-Capture-Migration and Affinity-Capture-Separation for Use in Clinical Testing and Life Science Applications, J. Chromatogr. A, 464109 https://doi.org/10.1016/j.chroma.2023.464109
-
[25] Mao, K., Zhang, H., Pan, Y., Zhang, K., Cao, H., Li, X., Yang, Z. (2020) Nanomaterial-based aptamer sensors for analysis of illicit drugs and evaluation of drugs consumption for Wastewater-Based Epidemiology, Trends in Analytical Chemistry 130: 115975 https://doi.org/10.1016/j.trac.2020.115975).
-
[26] Naresh, V., Lee, N. (2021) A review on biosensors and recent development of nanostructured materials-enabled biosensors, Sensors, 21:1–35. https://doi.org/10.3390/s21041109.
-
[27] Soni, S., Jain, U., Burke, D.H., Chauhan, N. (2022) Recent trends and emerging strategies for aptasensing technologies for illicit drugs detection, J of Electroanal. Chem 910:116128 https://doi.org/10.1016/j.jelechem.2022.116128
-
[28] Xie, Y., Lin, J.H., Chen, L.Y., Feng, L., Chen, Z.M., Zheng, J.X., Qin, S.N., Li, G.W., Salminen, K., Sun, J.J. (2023) Rapid nanomolar detection of ketamine in biofluids based on electrochemical aptamer-based sensor for drugged driving screening within 30 s, Sensors Actuators B Chem. 390: 133903. https://doi.org/10.1016/j.snb.2023.133903.
-
[29] H. Stevenson, A. Bacon, K.M. Joseph, W.R.W. Gwandaru, A. Bhide, D. Sankhala, V.N. Dhamu, S. Prasad, A Rapid Response Electrochemical Biosensor for Detecting Thc In Saliva, Sci. Rep. 9 (2019) 1–11. https://doi.org/10.1038/s41598-019-49185-y.
-
[30] Suraev, A., McCartney, D., Kevin, R. Gordon, R., Grunstein, R.R., Hoyos, C.M., McGregor, I.S. (2024) Detection of Δ9 -tetrahydrocannabinol (THC) in oral fluid using two point-of-collection testing devices following oral administration of a THC and cannabidiol containing oil, Drug Test. Anal. 16:1-1592, https://doi.org/10.1002/DTA.3658.
-
[31] Lachenmeier, D.W., Habel, S., Fischer, B., Herbi, F., Zerbe, Y., Bock, V., Rajcic de Rezende, T., Walch, S.G., Sproll, C. (2023) Are adverse effects of cannabidiol (CBD) products caused by tetrahydrocannabinol (THC) contamination?, F1000Research. 8:1394 DOI: 10.12688/f1000research.19931.7
-
[32] Amini, K., Sepehrifard, A., Valinasabpouri, A., Safruk, J., Angelone, D., de Campos Lourenco, T., Recent advances in electrochemical sensor technologies for THC detection—a narrative review, Journal of Cannabis Research, https://doi.org/10.1186/s42238-022-00122-3
-
[33] Substance Abuse and Mental Health Services Administration, (SAMSHA), SAMSHA Analytes and Their Cut-offs, (2023) https://www.federalregister.gov (Access date: 10.01.2024)
-
[34] Stevenson, H., Bacon, A., Joseph, K.M., Gwandaru, W.R.W., Bhide, A., Sankhala, D., Dhamu, V.N., Prasad, S. (2019) A Rapid Response Electrochemical Biosensor for Detecting THC In Saliva, Sci. Rep. 9: 1–11. https://doi.org/10.1038/s41598-019-49185-y.
-
[35] Tlili amal, M. Souiri, W. Douki, A. Othmane, H. Saadaoui, (2018) Development of an electrochemical biosensor for ∆9-tetrahydrocannabinol detection based on gold surfaces functionalized with self-assembled monolayers, Proceedings of MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition, 01:5893. https://doi.org/10.3390/mol2net-04-05893.
-
[36] Lu, D., Lu, F., Pang, G. (2016) A novel tetrahydrocannabinol electrochemical nano immunosensor based on horseradish peroxidase and Double-Layer gold nanoparticles, Molecules, 21(10): 1377 https://doi.org/10.3390/molecules21101377.
-
[37] Harpaz, D., Bernstein, N., Namdar, D., Eltzov, E. (2022) Portable biosensors for rapid on-site determination of cannabinoids in cannabis, a review, Biotechnology Advances 61: 108031 10.1016/j.biotechadv.2022.108031
-
[38] Xiao, Y., Yu, H., Luo, Y., Alkhamis, O., Canoura, J., Yu, B (2021) Isolation of natural DNA aptamers for challenging small-molecule targets, cannabinoids, Anal. Chem. 93: 3172–3180. https://doi.org/10.1021/acs.analchem.0c04592.
-
[39] Kekedy-Nagy, L., Perry, J.M., Little, S.R., Llorens, O.Y., Shih, S.C.C. (2023) An electrochemical aptasensor for Δ9-tetrahydrocannabinol detection in saliva on a microfluidic platform, Biosensors and Bioelectronics 222: 114998 https://doi.org/10.1016/j.bios.2022.114998
-
[40] Xie,Y., She,J.P., Zheng,J.X., Salminen, K., Sun, J.J. (2024) Rapid nanomolar detection of Δ9-tetrahydrocannabinol in biofluids via electrochemical aptamer-based biosensor, Analytica Chimica Acta 1295:342304 https://doi.org/10.1016/j.aca.2024.342304
-
[41] Mao, K.,Yang, Z., Li, J., Zhou,X., Li,X.,Hu,J. (2017) A novel colorimetric biosensor based on non-aggregated Au@Ag core–shell nanoparticles for methamphetamine and cocaine detection, Talanta. 175 338–346. https://doi.org/10.1016/j.talanta.2017.07.011.
-
[42] Emniyet Genel Müdürlüğü, Turkey Drug Report, (2021) 1–140. http://www.narkotik.pol.tr (Access date: 10.01.2024)
-
[43] Dragan, A.M., Parrilla, M., Feier, B.,Oprean,R., Cristea,C., De Wael, K. (2021) Analytical techniques for the detection of amphetamine-type substances in different matrices: A comprehensive review, Trends in Analytical Chemistry 145:116447 https://doi.org/10.1016/j.trac.2021.116447
-
[44] Cumba, L.R., Smith, J.P., Zuway, K.Y., Sutcliffe, O.B., Do Carmo, D.R., Banks, C.E. (2016) Forensic electrochemistry: Simultaneous voltammetric detection of MDMA and its fatal counterpart “dr Death” Anal. Methods. 8:142–152. https://doi.org/10.1039/c5ay02924d
-
[45] Haghighi, M., Shahlaei, M., Irandoust, M., Hassanpour, A. (2020) New and sensitive sensor for voltammetry determination of Methamphetamine in biological samples, J. Mater. Sci. Mater. Electron. 31:10989–11000. https://doi.org/10.1007/s10854-020-03647-6.
-
[46] Lee, K., Saisahas, K., Soleh, A., Kunalan,V., Chang, K.H., Limbut, W., Abdullah, A.F.L. (2022) Forensic Electrochemistry: Electrochemical Analysis of Trace Methamphetamine Residues on Household Surfaces, J. Electrochem. Soc. 169:56514. https://doi.org/10.1149/1945-7111/ac6c4f.
-
[47] Bartlett,C.A.,Taylor,S.,Fernandez,C.,Wanklyn,C.,Burton, D., Enston, E., Raniczkowska, A., Black, M., Murphy, L. (2016) Disposable screen printed sensor for the electrochemical detection of methamphetamine in undiluted saliva, Chem. Cent. J. 10:1–9. https://doi.org/10.1186/s13065-016-0147-2.
-
[48] Atik, G., Kılıç, N.M., Horzum, N., Odacı, D., Timur, S. (2023) Antibody-Conjugated Electrospun Nanofibers for Electrochemical Detection of Methamphetamine, ACS Appl. Mater. Interfaces. 15:24109–24119. https://doi.org/10.1021/acsami.3c02266.
-
[49] Soni,S.,Jain,U., Burke,D.H., Chauhan,N. (2022) A label free, signal off electrochemical aptasensor for amphetamine detection, Surfaces and Interfaces 31:102023. https://doi.org/10.1016/j.surfin.2022.102023
-
[50] Xie, Y., Wu,S., Chen,Z., Jiang,J., Sun,J. (2022) Rapid nanomolar detection of methamphetamine in biofluids via a reagentless electrochemical aptamer-based biosensor, Anal. Chim. Acta. 1207:339742. https://doi.org/10.1016/j.aca.2022.339742.
-
[51] Chang, W., Zheng, Z.,Ma,Y., Du,Y., Shi,X.,Wang,C. (2024) An electrochemical aptasensor for methylamphetamine rapid detection by single-on mode based on competition with complementary DNA, Sci. Rep. 14:1–12. https://doi.org/10.1038/s41598-024-59505-6.
-
[52] Liu,H. (2024) Highly selective detection of methamphetamine in urine using biosynthesized graphene oxide-gold nanoparticle composite modified electrodes, International Journal of Electrochemical Science 19:100851. https://doi.org/10.1016/j.ijoes.2024.100851
-
[53] DEA, Drug Enforcement Administration, (2022) Drug Fact Sheet, Cocaine, https://www.dea.gov/sites (Access date: 10.01.2024)
-
[54] Stojanovic, M., Prada, P.N., Landry, D.W. (2001) Aptamer-Based Folding Fluorescent Sensor for Cocaine, Journal of the American Chemical Society, 123:21 https://doi.org/10.1021/ja0038171
-
[55] Roushani, M., Shahdost-Fard,F. (2015) A highly selective and sensitive cocaine aptasensor based on covalent attachment of the aptamer-functionalized AuNPs onto nanocomposite as the support platform, Anal. Chim. Acta. 853:214–221. https://doi.org/10.1016/j.aca.2014.09.031.
-
[56] Roushani,M., Shahdost-Fard,F. (2015) A novel ultrasensitive aptasensor based on silver nanoparticles measured via enhanced voltammetric response of electrochemical reduction of riboflavin as redox probe for cocaine detection, Sensors Actuators, B Chem. 207:764–771. https://doi.org/10.1016/j.snb.2014.10.131.
[57] Roushani,M., Shahdost-Fard,F. (2016) An aptasensor for voltammetric and impedimetric determination of cocaine based on a glassy carbon electrode modified with platinum nanoparticles and using rutin as a redox probe, Microchim. Acta. 183:185–193. https://doi.org/10.1007/s00604-015-1604-7.
-
[58] Shahdost-Fard, F., Roushani,M. (2016) Conformation switching of an aptamer based on cocaine enhancement on a surface of modified GCE, Talanta. 154:7–14. https://doi.org/10.1016/j.talanta.2016.03.055.
-
[59] Taghdisi, S.M., Danesh, N.M., Emrani, A.S., Ramezani, M., Abnous, K. (2015) A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine, Biosensors and Bioelectronics 73:245-250 https://doi.org/10.1016/j.bios.2015.05.065
-
[60] Hashemi, P., Bagheri,H., Afkhami,A., Ardakani,Y.H.,Madrakian, T. (2017) Fabrication of a novel aptasensor based on three-dimensional reduced graphene oxide/polyaniline/gold nanoparticle composite as a novel platform for high sensitive and specific cocaine detection, Anal. Chim. Acta. 996:10–19. https://doi.org/10.1016/j.aca.2017.10.035.
-
[61] Tavakkoli,N., Soltani,N., Mohammadi,F. (2019) A nanoporous gold-based electrochemical aptasensor for sensitive detection of cocaine, RSC Adv. 9:14296–14301. https://doi.org/10.1039/c9ra01292c.
-
[62] European Food Safety Authority, (2011) Scientific Opinion on the risks for public health related to the presence of opium alkaloids in poppy seeds, EFSA J. 9:1–150. https://doi.org/10.2903/j.efsa.2011.2405.
-
[63] Report of the International Narcotics Control Board, (2022) https://www.un-ilibrary.org/content/books (Access date: 10.01.2024)
-
[64] Garrido, J.M.P.J., Delerue-Matos, C., Borges, F., Macedo, T.R.A., Oliveira-Brett, A.M. (2004) Voltammetric oxidation of drugs of abuse III. Heroin and metabolites, Electroanalysis. 16:1497–1502. https://doi.org/10.1002/elan.200302975.
-
[65] Abraham, P., Vijayan, R. S. P., Sreevalsan, N. V. K., Anithakumary, V. (2020) Review on the Progress in Electrochemical Detection of Morphine Based on Different Modified Electrodes, J. Electrochem. Soc. 167:037559. https://doi.org/10.1149/1945-7111/ab6cf6
-
[66] Ensafi, A.A.,Heydari-Bafrooei,E.,Rezaei,B. (2013) Different interaction of codeine and morphine with DNA: A concept for simultaneous determination, Biosens. Bioelectron. 41:627–633. https://doi.org/10.1016/j.bios.2012.09.039.
-
[67] Cromartie, R.L. PhD Thesis, (2021) Aptamer-based Voltammetric Biosensing for the detection of Codeine and Fentanyl in Sweat and Saliva, https://doi.org/10.1039/C8AY02080A
-
[68] Zhang, H., Jiang, B., Xiang, Y., Zhang, Y., Chai, Y., Yuan, R. (2011) Aptamer/quantum dot-based simultaneous electrochemical detection of multiple small molecules, Anal. Chim. Acta. 688:99–103. https://doi.org/10.1016/j.aca.2010.12.017.
-
[69] Talemi, R.P., Mashhadizadeh, M.H. (2015) A novel morphine electrochemical biosensor based on intercalative and electrostatic interaction of morphine with double strand DNA immobilized onto a modified Au electrode, Talanta 131:460–466. https://doi.org/10.1016/j.talanta.2014.08.009.
-
[70] Azadbakht, A., Abbasi, A.R., (2019) Engineering an aptamer-based recognition sensor for electrochemical opium alkaloid biosensing, J. Mater. Sci. Mater. Electron. 30:3432–3442. https://doi.org/10.1007/s10854-018-00618-w.