Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Retrotransposon Mobility Caused by Growth Regulator 2,4-D Isooctylester Herbicide in Wheat (Triticum aestivum L.) Seeds by Molecular Method

Yıl 2019, , 585 - 594, 31.08.2019
https://doi.org/10.18185/erzifbed.480629

Öz

The aim of this study was to investigate the effects of herbicides on
retrotransposon activity using IRAP (Inter Retrotransposon Amplified
Polymorphism) technique.
For this purpose, For this purpose, 2,4-D
Isooctylester was applied on wheat seeds with increasing doses (0, 0.1, 0.2,
0.3, 0.4 and 0.5 ppm).
Six primers were used for IRAP analysis. As a
result of the study, it was observed that retrotransposon polymorphism was high
(15.38% -53.84%) in 2,4-D Isooctylester
application.
As a result of the increase in DNA damage, the
rate of GTS (Genomic Stability Stability) decreased (84.62% and 46.16%). The
results showed that IRAP method can be used effectively to examine the effect
of stress factors on retrotransposon
mobility.

Kaynakça

  • 1 EFSA (European Food Safety Authority), 2015. Conclusion on the peer review of the pesticide risk assessment of the active substance bentazone. EFSA J. 26,4077.2. Hansoy, Z., 2010. Bir Herbisit Olan 2,4-D (2,4-diklorofenoksiasetik asit)’nin Poecilia reticulata (Teleostei, Poeciliidae)’da Testis Dokusu Üzerine Etkisi. Y. Lisans Tezi, Ege Üniversitesi, Fen Bilimleri Enstitüsü, İzmir.3. Gehring, C.A., Irving, H.R., Parish, R.W. ,1990. Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells. Proc. Natl. Acad. Sci. USA, 87, 9645–9649.4. Donald D.B., Syrgiannis J, Hunter F, Weiss G.,1999. Agricultural pesticides threaten the ecological integrity of northern prairie wetlands. Sci. Total Environ. Jul., 23: 173-81.5. Pavlica, M., Papes, D. and Nagy, B., 1991. 2,4-Dichlorophenoxyacetic acid causes chromatin and chromosome abnormalities in plant cells and mutation in cultured mammalian cells. Mutation Research Letters, 263, 77-81.6. Enan, M.R., 2009. Genotoxicity of the herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D): higher plants as monitoring systems. Journal of Forest and Environmental Science, 25, 147-155.7. Giray Kurt, A., 2007. Callisto Herbisitinin Zea mays L. (Mısır)’ın Martha F1 Kültür Formunda Total Glutatyon, Glutatyon Redüktaz, Glutatyon-S-Transferaz ve Pigment İçeriği Üzerine Etkileri. Y. Lisans Tezi, İnönü Üniversitesi, Fen Bilimleri Enstitüsü, Malatya.8. Khanna, N., Sharma, S., 2013. Allium cepa root chromosomal aberration assay: a review. IJPBR, 1,105–119.9. Piraino, F., Aina, R., Palin, L., et al., 2006. Air quality biomonitoring: assessment of air pollution genotoxicity in the province of Novara (North Italy) by using Trifolium repens L. and molecular markers. Sci Total Environ.,372,350–359.10. Sobieh, S.S., Kheirallai, Z.M.H., Rushdy, A.A., et al., 2016. In vitro and in vivo genotoxicity and molecular response of silver nanoparticles on different biological model systems. Caryologia, 69,147–161.11. Yüzbaşıoğlu, G., Yilmaz, S., Gozukirmizi, N., 2016. Houba retrotransposon- based molecular markers, tool for variation analysis in rice. Turk J Agric For.,40,456–464.12. Feschotte, C., Jiang, N. and Wessler, S.R., 2002. Plant transposable elements: where Genetics meets genomics. Nat. Rev. Genet., 3, 329- 341.13. Sabot, F. and Schulman, A,H., 2006. Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity, 97,381-388. 14. Schulman, A.H., Flavell, A.J., Paux, E., et al., 2012. The application of LTR retrotransposons as molecular markers in plants. Methods Mol Biol., 859,115–153.15. IHGSC (International Human Genome Sequencing Consortium), 2001, Initial sequencing and analysis of the human genome. Nature, 409, 860- 921. 16. Schulman, A.H., Kalendar, R., 2005. A movable feast: Diverse retrotransposons and their contribution to barley genome dynamics. Cytogenetics and Genome Research, 110, 598-60517. Alzohairy, A.M., Yousef, M.A., Edris, S., et al.,2012. Detection of LTR retrotransposons reactivation induced by in vitro environmental stresses in barley (Hordeum vulgare) via RT–qPCR. Life Sci J.,9,5019–5026.18. Alzohairy, A.M., Gyulai, G., Jansen, R.K., et al., 2013. Transposable elements domesticated and neo functionalized by eukaryotic genomes. Plasmid.,69,1–15.19. Alzohairy, A.M., Sabir, J.S.M., Gyulai, G., et al., 2014.Environmental stress activation of plant long-terminal repeat retrotransposons. Funct Plant Biol.,41,557–567.20. Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., Allard, R.W., (1984). Ribosomal DNA sepacer-length polymorphism in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci.,81,8014–8019.21. Atienzar, F.A., Conradi, M., Evenden, A.J. Jha, A.N. and Depledge, M.H., 1999. ‘‘Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo[a]pyrene. Environ. Toxicol. Chem., 18,2275-2282. 22. Jurka J, Kapitonov VV, Kohany O and JurkamMV. Repetitive Sequences in Complex Genomes: Structure and Evolution. Annu. Rev. Genomics Hum. Genet. 8: 241-259, 2007.23. Hirochika, H., 1995. Activation of plant retrotransposons by stress, in Oono K, Takaiwa F (eds): Modification of Gene Expression and Non-Mendelien Inheritance, pp 15-21, National Institute of Agrobiological Resources, Tsukuba. 24. Grandbastien, M.A., Audeon, C.E., Bonnivard, J.M., Casacuberta B, Chalhoub, A.P.P, Costa, Q.H., Lea, D., Melayah, M., Petit, C., Poncet, S.M., Tam, M.A., Van Sluys, C. and Mhiria, 2005.. Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res., 110, 229- 241. 25. Salazar, M., González, E., Casaretto, J.A., Casacuberta, J.M. and Ruiz-Lara, S., 2007. The promoter of the TLC1.1 retrotransposon from Solanum chilense is activated by multiple stress-related signaling molecules. Plant Cell Rep. ,26, 1861-1868,. 26. Bulut, H., Yildirim Doğan, N., 2018. Determınatıon by Molecular Methods of DNA Damage Caused by Heavy Metals ın Graıns, Journal of The Korean Socıety For Applıed Bıologıcal Chemıstry, 63, 1-8.27. Cenkci, S. , Yildiz, M., Ciğerci, I.H. , Bozdağ, A. , Terzi, H. , Terzi, E.S. , 2010. Evaluation of 2,4-D and Dicamba genotoxicity in bean seedlings using comet and RAPD assays, Ecotoxicology and Environmental Safety, 73, 1558-1564.28. Yılmaz, S., Maraklı, S., Yüzbasıoglu, G., Gözükırmızı, N., 2018. Short-term mutagenicity test by using IRAP molecular marker in rice grown under herbicide treatment. Biotechnology and Biotechnological Equipment DOI: 10.1080/13102818.2018.147413729. Taspinar, M.S., Aydin, M., Arslan, E., Yaprak, M., Agar, G., 2016. 5-Aminolevulinic acid improves DNA damage and DNA Methylation changes in deltamethrin-exposed Phaseolus vulgaris seedlings Plant physiology and biochemistry 118, 267-273.

Buğday (Triticum aestivum L.) Tohumlarında Büyüme Düzenleyicisi 2,4-D Isooctylester Herbisitinin Meydana Getirdiği Retrotranspozon Hareketliliğinin Moleküler Yöntem İle Değerlendirilmesi

Yıl 2019, , 585 - 594, 31.08.2019
https://doi.org/10.18185/erzifbed.480629

Öz

Bu çalışmanın amacı, herbisitlerin retrotranspozon aktiviteleri
üzerindeki etkilerini IRAP (Retrotranspozon-arası çoğaltılmış polimorfizm)
tekniği kullanarak araştırmaktı. Bu amaçla buğday tohumlarına çimlenme
aşamasında artan dozlarda (0, 0,1, 0,2, 0,3, 0,4 ve 0,5 ppm) 2,4-D
Isooctylester uygulanmıştır. IRAP analizleri için altı primer kullanılmıştır.
Çalışma sonucunda, 2,4-D Isooctylester uygulamasında retrotranspozon
polimorfizminin yüksek olduğu (%15.38 - %53.84) gözlemlenmiştir. Doz artışına
bağlı olarak DNA hasarı sonucu GTS (Genomik Kararlılık Sabitliği) oranının
(%84.62 ve %46.16) azaldığı görülmüştür.
Sonuçlar bize stres faktörlerinin retrotranspozon
hareketliliğine etkisinin incelenmesinde IRAP yönteminin etkin bir şekilde
kullanılabileceğini göstermiştir.

Kaynakça

  • 1 EFSA (European Food Safety Authority), 2015. Conclusion on the peer review of the pesticide risk assessment of the active substance bentazone. EFSA J. 26,4077.2. Hansoy, Z., 2010. Bir Herbisit Olan 2,4-D (2,4-diklorofenoksiasetik asit)’nin Poecilia reticulata (Teleostei, Poeciliidae)’da Testis Dokusu Üzerine Etkisi. Y. Lisans Tezi, Ege Üniversitesi, Fen Bilimleri Enstitüsü, İzmir.3. Gehring, C.A., Irving, H.R., Parish, R.W. ,1990. Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells. Proc. Natl. Acad. Sci. USA, 87, 9645–9649.4. Donald D.B., Syrgiannis J, Hunter F, Weiss G.,1999. Agricultural pesticides threaten the ecological integrity of northern prairie wetlands. Sci. Total Environ. Jul., 23: 173-81.5. Pavlica, M., Papes, D. and Nagy, B., 1991. 2,4-Dichlorophenoxyacetic acid causes chromatin and chromosome abnormalities in plant cells and mutation in cultured mammalian cells. Mutation Research Letters, 263, 77-81.6. Enan, M.R., 2009. Genotoxicity of the herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D): higher plants as monitoring systems. Journal of Forest and Environmental Science, 25, 147-155.7. Giray Kurt, A., 2007. Callisto Herbisitinin Zea mays L. (Mısır)’ın Martha F1 Kültür Formunda Total Glutatyon, Glutatyon Redüktaz, Glutatyon-S-Transferaz ve Pigment İçeriği Üzerine Etkileri. Y. Lisans Tezi, İnönü Üniversitesi, Fen Bilimleri Enstitüsü, Malatya.8. Khanna, N., Sharma, S., 2013. Allium cepa root chromosomal aberration assay: a review. IJPBR, 1,105–119.9. Piraino, F., Aina, R., Palin, L., et al., 2006. Air quality biomonitoring: assessment of air pollution genotoxicity in the province of Novara (North Italy) by using Trifolium repens L. and molecular markers. Sci Total Environ.,372,350–359.10. Sobieh, S.S., Kheirallai, Z.M.H., Rushdy, A.A., et al., 2016. In vitro and in vivo genotoxicity and molecular response of silver nanoparticles on different biological model systems. Caryologia, 69,147–161.11. Yüzbaşıoğlu, G., Yilmaz, S., Gozukirmizi, N., 2016. Houba retrotransposon- based molecular markers, tool for variation analysis in rice. Turk J Agric For.,40,456–464.12. Feschotte, C., Jiang, N. and Wessler, S.R., 2002. Plant transposable elements: where Genetics meets genomics. Nat. Rev. Genet., 3, 329- 341.13. Sabot, F. and Schulman, A,H., 2006. Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity, 97,381-388. 14. Schulman, A.H., Flavell, A.J., Paux, E., et al., 2012. The application of LTR retrotransposons as molecular markers in plants. Methods Mol Biol., 859,115–153.15. IHGSC (International Human Genome Sequencing Consortium), 2001, Initial sequencing and analysis of the human genome. Nature, 409, 860- 921. 16. Schulman, A.H., Kalendar, R., 2005. A movable feast: Diverse retrotransposons and their contribution to barley genome dynamics. Cytogenetics and Genome Research, 110, 598-60517. Alzohairy, A.M., Yousef, M.A., Edris, S., et al.,2012. Detection of LTR retrotransposons reactivation induced by in vitro environmental stresses in barley (Hordeum vulgare) via RT–qPCR. Life Sci J.,9,5019–5026.18. Alzohairy, A.M., Gyulai, G., Jansen, R.K., et al., 2013. Transposable elements domesticated and neo functionalized by eukaryotic genomes. Plasmid.,69,1–15.19. Alzohairy, A.M., Sabir, J.S.M., Gyulai, G., et al., 2014.Environmental stress activation of plant long-terminal repeat retrotransposons. Funct Plant Biol.,41,557–567.20. Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., Allard, R.W., (1984). Ribosomal DNA sepacer-length polymorphism in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci.,81,8014–8019.21. Atienzar, F.A., Conradi, M., Evenden, A.J. Jha, A.N. and Depledge, M.H., 1999. ‘‘Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo[a]pyrene. Environ. Toxicol. Chem., 18,2275-2282. 22. Jurka J, Kapitonov VV, Kohany O and JurkamMV. Repetitive Sequences in Complex Genomes: Structure and Evolution. Annu. Rev. Genomics Hum. Genet. 8: 241-259, 2007.23. Hirochika, H., 1995. Activation of plant retrotransposons by stress, in Oono K, Takaiwa F (eds): Modification of Gene Expression and Non-Mendelien Inheritance, pp 15-21, National Institute of Agrobiological Resources, Tsukuba. 24. Grandbastien, M.A., Audeon, C.E., Bonnivard, J.M., Casacuberta B, Chalhoub, A.P.P, Costa, Q.H., Lea, D., Melayah, M., Petit, C., Poncet, S.M., Tam, M.A., Van Sluys, C. and Mhiria, 2005.. Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res., 110, 229- 241. 25. Salazar, M., González, E., Casaretto, J.A., Casacuberta, J.M. and Ruiz-Lara, S., 2007. The promoter of the TLC1.1 retrotransposon from Solanum chilense is activated by multiple stress-related signaling molecules. Plant Cell Rep. ,26, 1861-1868,. 26. Bulut, H., Yildirim Doğan, N., 2018. Determınatıon by Molecular Methods of DNA Damage Caused by Heavy Metals ın Graıns, Journal of The Korean Socıety For Applıed Bıologıcal Chemıstry, 63, 1-8.27. Cenkci, S. , Yildiz, M., Ciğerci, I.H. , Bozdağ, A. , Terzi, H. , Terzi, E.S. , 2010. Evaluation of 2,4-D and Dicamba genotoxicity in bean seedlings using comet and RAPD assays, Ecotoxicology and Environmental Safety, 73, 1558-1564.28. Yılmaz, S., Maraklı, S., Yüzbasıoglu, G., Gözükırmızı, N., 2018. Short-term mutagenicity test by using IRAP molecular marker in rice grown under herbicide treatment. Biotechnology and Biotechnological Equipment DOI: 10.1080/13102818.2018.147413729. Taspinar, M.S., Aydin, M., Arslan, E., Yaprak, M., Agar, G., 2016. 5-Aminolevulinic acid improves DNA damage and DNA Methylation changes in deltamethrin-exposed Phaseolus vulgaris seedlings Plant physiology and biochemistry 118, 267-273.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Serap Sunar 0000-0002-2011-1117

Hüseyin Bulut

Yayımlanma Tarihi 31 Ağustos 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Sunar, S., & Bulut, H. (2019). Buğday (Triticum aestivum L.) Tohumlarında Büyüme Düzenleyicisi 2,4-D Isooctylester Herbisitinin Meydana Getirdiği Retrotranspozon Hareketliliğinin Moleküler Yöntem İle Değerlendirilmesi. Erzincan University Journal of Science and Technology, 12(2), 585-594. https://doi.org/10.18185/erzifbed.480629