Konferans Bildirisi
BibTex RIS Kaynak Göster

Some Applications of the Concircular Mappings on the Weyl Manifolds

Yıl 2019, , 788 - 795, 31.08.2019
https://doi.org/10.18185/erzifbed.487994

Öz

In this paper, two applications of concircular
mappings on the Weyl manifolds are given: Firstly, a necessary and sufficient
condition for an Einstein-Weyl manifold to be concircularly Ricci-flat is
obtained. Secondly, after defining a special type of semi-symmetric non-metric
connection which is called S -concircular, some properties of the Weyl manifold
with a vanishing curvature tensor with respect to such a connection are
examined.

Kaynakça

  • Besse, A.L. 1987. Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 10.
  • Eisenhart, L.P. 1927. Non-Riemannian Geometry, American Math.Society Colloqium Publications, Vol.8.
  • Liang, Y. 1994. On semi symmetric recurrent metric S-concircular connections, Journal of Mathematical Study, 104-108.
  • Miron, R. 1968. Mouvements conformes dans les espaces W_n, Tensor N.S., 19, 33-41.
  • Murgescu, V. 1968. Espaces de Weyl a torsion et leurs representations conformes, Ann. Sci. Univ. Timisoara, 221-228.
  • Norden, A. 1976. Affinely connected spaces, GRMFL, Moscow (in Russian).
  • Nurcan, F. 2014. A Necessary and Sufficient Condition on the Weyl Manifolds admitting a semi symmetric non-metric connection to be S-concircular, 12. National Geometry Symposium, Bilecik University.
  • Ozdeger, A. and Senturk, Z. 2002. Generalized Circles in Weyl Spaces and their conformal mapping, Publ. Math. Debrecen, 60, 1-2 & 75-87.
  • Scholz, E. 2008. Weyl geometry in late 20th century physics, arxiv.org/math arxiv, 1111.3220.
  • Unal, F. Nurcan and Uysal, A. 2005. Weyl Manifolds with semi symmetric connections, Mathematical and Computational Applications, 10, 351-358.

Weyl Manifoldları Üzerindeki Concircular Tasvirlerin Bazı Uygulamaları

Yıl 2019, , 788 - 795, 31.08.2019
https://doi.org/10.18185/erzifbed.487994

Öz

Bu çalışmada, Weyl manifoldları üzerindeki
concircular tasvirlerin iki uygulaması verilmiştir: İlk olarak, Einstein-Weyl
manifoldunun concircular Ricci düz olabilmesi için bir gerek-yeter şart elde
edilmiştir. Daha sonra da, S -concircular olarak adlandırılan özel tipteki bir
yarı simetrik non-metrik konneksiyon tanımlanarak, böyle bir konneksiyona göre
sıfırlanan eğrilik tensörüne sahip Weyl manifoldunun bazı özellikleri
incelenmiştir

Kaynakça

  • Besse, A.L. 1987. Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 10.
  • Eisenhart, L.P. 1927. Non-Riemannian Geometry, American Math.Society Colloqium Publications, Vol.8.
  • Liang, Y. 1994. On semi symmetric recurrent metric S-concircular connections, Journal of Mathematical Study, 104-108.
  • Miron, R. 1968. Mouvements conformes dans les espaces W_n, Tensor N.S., 19, 33-41.
  • Murgescu, V. 1968. Espaces de Weyl a torsion et leurs representations conformes, Ann. Sci. Univ. Timisoara, 221-228.
  • Norden, A. 1976. Affinely connected spaces, GRMFL, Moscow (in Russian).
  • Nurcan, F. 2014. A Necessary and Sufficient Condition on the Weyl Manifolds admitting a semi symmetric non-metric connection to be S-concircular, 12. National Geometry Symposium, Bilecik University.
  • Ozdeger, A. and Senturk, Z. 2002. Generalized Circles in Weyl Spaces and their conformal mapping, Publ. Math. Debrecen, 60, 1-2 & 75-87.
  • Scholz, E. 2008. Weyl geometry in late 20th century physics, arxiv.org/math arxiv, 1111.3220.
  • Unal, F. Nurcan and Uysal, A. 2005. Weyl Manifolds with semi symmetric connections, Mathematical and Computational Applications, 10, 351-358.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Fusun Nurcan 0000-0003-0146-992X

Yayımlanma Tarihi 31 Ağustos 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Nurcan, F. (2019). Some Applications of the Concircular Mappings on the Weyl Manifolds. Erzincan University Journal of Science and Technology, 12(2), 788-795. https://doi.org/10.18185/erzifbed.487994