Araştırma Makalesi
BibTex RIS Kaynak Göster

Thermal Analysis of Power Transformer by Combined Electromechanical Finite Element Method

Yıl 2019, , 934 - 941, 31.08.2019
https://doi.org/10.18185/erzifbed.513969

Öz

Before
starting the transformer design, knowing the temperature distribution and the
thermal limits are of great importance for a correct design. The temperature
above the permissible thermal limits may cause serious damage to the
transformer components. In this study, a model for thermal field analysis is
presented. In this way, temperature distribution and thermal field analysis of
a three-phase transformer were performed by ANSYS@Maxwell and ANSYS@Mechanical
combination simulation software based on the combined electromechanical Finite
Element Method (FEM) technique based on all conditions ranging from the heat
occurring in the active parts of the transformer to the temperature of the
environment. To verify the proposed model, a transformer with a nominal value
of 15 MVA of 33/11 kV was selected. The values ​​obtained from the simulation
were compared with the experimental values ​​and the models and results were
confirmed. Thanks to the designed model, the temperature distribution in the
core and the windings of the transformer and the temperature of the specific
points in the undetectable areas of the transformer temperature were
determined.

Kaynakça

  • Hjalmars, M. 2012. Optmiization, Study on Oil Flow and Temperature Distribution in Power Transformer Windings, MS.c. Thesis, Stockholm, sweden.
  • Yugendrao K. N. 2016. Structural Modeling of a Three Phase Core type Transformer using ANSYS Maxwell 3D, Internatıonal Journal Of Innovatıve Research In Electrıcal, Electronıcs, Instrumentatıon And Control Engıneerıng Vol. 4, Issue 4, April, pp. 17-20.
  • Kardag, R. 2012. Temperature Distribution in Power Trasformers, MS.c. Thesis, Electrical and Electronics Engineering in Middle East Technical University September.
  • OROSZ, T. KLEIZER, G. IVÁNCSY, T. Z. TAMUS, Á. 2016. Comparison of methodsforcalculation of core-form power transformer’score temperature rise, Periodica Poly technica Electrical Engineering and Computer Science, 60(2), pp. 88-95.
  • Myint, M. L. OO, Y. A. 2014. Analysis of distribution transformer design using FEA, International Journal of Scientific Research Engineering &Technology (IJSRET), Volume 3, Issue 4, July (773-775)
  • Chen, Y. Pillay, P. 2002. An Improved Formula for Lamination Core Loss Calculation in Machine Operating with High Frequency and High Flux Density Excitation, IEEE.
  • Madžarević, V. Kapetanović, I. Tešanović, Kasumović, M. M. 2011. Different Approach to Thermal Modeling of Transformers - a comparison of methods, INTERNATIONAL JOURNAL of ENERGY and ENVIRONMENT, Issue 5, Volume 5, p-610-617.

Birleştirilmiş Elektromekanik Sonlu Elemanlar Yöntemi ile Güç Transformatörünün Termal Alan Analizi

Yıl 2019, , 934 - 941, 31.08.2019
https://doi.org/10.18185/erzifbed.513969

Öz

Transformatör
tasarımına başlamadan önce, sıcaklık dağılımının ve termal sınırların bilinmesi
doğru bir tasarım için büyük önem teşkil etmektedir. İzin verilen termal
sınırların üzerindeki sıcaklık, transformatör bileşenlerinde ciddi hasara neden
olabilmektedir. Bu çalışmada, termal alan analizi için bir model sunulmuştur.
Bu sayede, transformatörün aktif kısımlarında meydana gelen ısıdan ortamın
sıcaklığına kadar tüm koşullar esas alınarak birleştirilmiş elektromekanik Sonlu
Elemanlar Yöntemi (SEY) tekniğine dayanan ANSYS@Maxwell ve ANSYS@Mechanical birleşimi
simülasyon yazılımı ile üç fazlı bir transformatörün sıcaklık dağılımı ve termal
alan analizi gerçekleştirilmiştir. Önerilen modeli doğrulamak için nominal
değeri 15 MVA 33/11 kV olan bir transformatör seçilmiştir. Simülasyondan elde
edilen değerler deneysel değerlerle karşılaştırılarak model ve sonuçlar
doğrulanmıştır. Tasarlanan model sayesinde, transformatörün nüvesinde ve
sargılarında meydana gelen sıcaklık dağılımı ve transformatörün sıcaklığı
ölçülemeyen bölgelerindeki spesifik noktaların sıcaklığı belirlenmiştir. 

Kaynakça

  • Hjalmars, M. 2012. Optmiization, Study on Oil Flow and Temperature Distribution in Power Transformer Windings, MS.c. Thesis, Stockholm, sweden.
  • Yugendrao K. N. 2016. Structural Modeling of a Three Phase Core type Transformer using ANSYS Maxwell 3D, Internatıonal Journal Of Innovatıve Research In Electrıcal, Electronıcs, Instrumentatıon And Control Engıneerıng Vol. 4, Issue 4, April, pp. 17-20.
  • Kardag, R. 2012. Temperature Distribution in Power Trasformers, MS.c. Thesis, Electrical and Electronics Engineering in Middle East Technical University September.
  • OROSZ, T. KLEIZER, G. IVÁNCSY, T. Z. TAMUS, Á. 2016. Comparison of methodsforcalculation of core-form power transformer’score temperature rise, Periodica Poly technica Electrical Engineering and Computer Science, 60(2), pp. 88-95.
  • Myint, M. L. OO, Y. A. 2014. Analysis of distribution transformer design using FEA, International Journal of Scientific Research Engineering &Technology (IJSRET), Volume 3, Issue 4, July (773-775)
  • Chen, Y. Pillay, P. 2002. An Improved Formula for Lamination Core Loss Calculation in Machine Operating with High Frequency and High Flux Density Excitation, IEEE.
  • Madžarević, V. Kapetanović, I. Tešanović, Kasumović, M. M. 2011. Different Approach to Thermal Modeling of Transformers - a comparison of methods, INTERNATIONAL JOURNAL of ENERGY and ENVIRONMENT, Issue 5, Volume 5, p-610-617.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Yıldırım Özüpak 0000-0001-8461-8702

Mehmet Salih Mamiş Bu kişi benim 0000-0001-8461-8702

Yayımlanma Tarihi 31 Ağustos 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Özüpak, Y., & Mamiş, M. S. (2019). Birleştirilmiş Elektromekanik Sonlu Elemanlar Yöntemi ile Güç Transformatörünün Termal Alan Analizi. Erzincan University Journal of Science and Technology, 12(2), 934-941. https://doi.org/10.18185/erzifbed.513969