Analysis of Temperature Distribution in Materials during Pulsed Laser-Material Interaction with Semi-Kinetic Theory
Yıl 2019,
, 1068 - 1082, 31.08.2019
Yıldız Koç
,
Ertuğrul Baltacıoğlu
Öz
Nowadays, with the development of technology,
the use of laser in the manufacturing industry is gaining importance because
of its low cost and high precision. During the laser-metal interaction, heat
transfer to the material and temperature distribution on the material are of
great importance in metal forming. In this study, the time depended
temperature distribution on the material surface and within the material were
examined for interaction of the 1.1010 W/m2 and 5.1010 W/m2
power pulsed lasers with four different materials (steel, nickel, tantalum
and titanyum). During laser-metal interaction, in the first step, heat
transfer was considered and the analysis was made until the material reaches
melting temperature with electron kinetic theory model. In the second step,
after the material reached melting temperature, heat transfer by convection
was analysed by classical method and heat transfer by conduction was analysed
by heat transfer kinetic theory approach (semi-classical theory). In order to
determine the variation of temperature distributions within material and
material surface depending on material thermodynamic properties, four
different materials were examined and the obtained temperature distributions
were compared with each other. A computer program was developed for numerical
solutions.
|
Kaynakça
- Beck, R. J., Parry, J. P., MacPherson, W. N., Waddie, A., Weston, N. J., Shephard, J. D., & Hand, D. P. (2010). “Application of cooled spatial light modulator for high power nanosecond laser micromachining”, Optics express,18(16), 17059-17065.
- Belforte, D., & Levitt, M. (Eds.). (2012).”The industrial laser handbook”: Edition. Springer Science & Business Media. 1992–1993
- Bulgan, A.T., Koç, A., Keçeciler, A., (1991) “The Heat Transfer Analysis Whıch Happens During Laser-Metal Interaction”, J. Inst Sci.Techno Gazi Univ, Vol.:4, No:1, pp:15-37, January 1991].
- Dekker, A. J. (1958). “Solid State Physics”, Vol. 6.Seitz and D. Turnbull, eds., Academic Press, New York, 251.
- Dekker, A. J. (1981). “In Solid State Physics”, Chapter 16, page no 408, Pub.
- Joe, D. J., Kim, S., Park, J. H., Park, D. Y., Lee, H. E., Im, T. H., ... & Lee, K. J. (2017). “Laser–material interactions for flexible applications”,.Advanced Materials,29(26), 1606586.
- Kittel, C. (2005). “Introduction to solid state physics”, John Wiley & Sons.Inc., New York.
- Koc, A., Yilbas, B. S., Koc, Y., Said, S., Gbadebo, S. A., & Sami, M. (1998).”Material response to laser pulse heating: a kinetic theory approach”,.Optics and lasers in engineering,30(3-4), 327-350.
- Koc, A. (2004). “3-D analysis of temperature distribution in the material during pulsed laser and material interaction”. Heat and mass transfer, 40(9), 697-706.
- Koc Y. (1995). “Kinetik teori yaklaşımı ile lase-malzeme etkileşimi sırasında malzemedeki sıcaklık dağılımının analizi”. Yüksek lisans tezi. Erciyes Üniversitesi Fenbilimleri Enstitüsü., Kayseri,1995
- Maiman, T. H. (1960). “Stimulated optical radiation in ruby. Masers”, Nature, 187,484-.493, 1960].
- Merhav, N. (2018). “Vibrations in a Solid–Phonons and Heat Capacity $$^* $$. In” Statistical Physics for Electrical Engineering (pp. 95-102). Springer, Cham.
- Neto, O. D., & Lima, C. A. S. (1994). “Nonlinear three-dimensional temperature profiles in pulsed laser heated solids”, Journal of Physics D: Applied Physics, 27(9), 1795.
- Remo, J. L., & Adams, R. G. (2008, May). “High energy density laser interactions with planetary and astrophysical materials: methodology and data. In”, High-Power Laser Ablation VII , (Vol. 7005, p. 70052M). International Society for Optics and Photonics.
- Prokhorov, A. M., Konov, V. I., Ursu, I., & Mihailescu, I. N. (1990). “Laser Heating of Metals”, Adam Hilger Series on Optics and Optoelectronics, Bristol: Hilger.
- Qiu, T. Q., & Tien, C. L. (1992). “Short-pulse laser heating on metals”, International Journal of Heat and Mass Transfer, 35(3), 719-726.
- Simon, G., Gratzke, U., & Kroos, J. (1993). “Analysis of heat conduction in deep penetration welding with a time-modulated laser beam”, Journal of Physics D: Applied Physics, 26(5), 862.
- Townes, C. H., & Schawlow, A. L. (1958). “Infrared and optical Masers”, Phys. Rev, 112(6), 1940-1949.
- Yan, J., Zhang, Y., Kim, P., & Pinczuk, A. (2007). “Electric field effect tuning of electron-phonon coupling in graphene”, Physical review letters, 98(16), 166802.
- Yilbas, B. S. (1986). “Heating of metals at a free surface by laser irradiation—an electron kinetic theory approach”, Laser and Particle Beams, 4(2), 275-286.
- Yilbas, B. S., & KOÇ, A. (1986), “Nd+ 3 Laser Rodunda Isıl Gerilmelerin ve Optik Distorsiyonların İncelenmesi”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 2109-119.
- Yilbas, B. S., & Apalak, K. (1987). “The basic concepts of heat transfer mechanism during laser drilling of metals”, Egypt J. of Phys, 18(2), 133-156.
- Yilbaş, B. S., & Yilbaş, Z. (1988). “Some aspects of laser-metal vapour interaction”, Pramana, 31(5), 365-381.
- Yilbas, B. S., Davies, R., Yilbas, Z., & Koc, A. (1990). Analysis of the absorption mechanism during laser-metal interaction. Pramana, 34(6), 473-489.
- Yilbaş, B. S. (1993). “Analytical solution for the heat conduction mechanism appropriate to the laser heating process”, International communications in heat and mass transfer, 20(4), 545-555.
- Yilbaş, B. S., & Şahin, A. Z. (1993). “An approach to convergency of kinetic theory to Fourier theory in relation to laser heating process”, Japanese journal of applied physics, 32(12R), 5646
- Yilbas, B. S., & Sami, M. (1995). “Laser heating mechanisms including evaporation process-semiclassical and kinetic theory approaches”, Japanese journal of applied physics, 34(12R), 6391.
- Yilbas, B. S. (1997). “Laser heating process and experimental validation”, International journal of heat and mass transfer, 40(5), 1131-1143.
- Yilbas, B. S., & Kalyon, M. (2002). “Analytical solution for pulsed laser heating process: convective boundary condition case”, International journal of heat and mass transfer, 45(7), 1571-1582.
Darbeli Laser-Malzeme Etkileşimi Sırasında Malzemedeki Sıcaklık Dağılımının Yarı Kinetik Teori ile Analizi
Yıl 2019,
, 1068 - 1082, 31.08.2019
Yıldız Koç
,
Ertuğrul Baltacıoğlu
Öz
Günümüzde teknolojinin gelişimi ile imalat
sanayisinde laserin kullanımı, düşük maliyet ve yüksek hassasiyetten dolayı
önem kazanmaktadır. Laser-metal etkileşimi sırasında malzemeye olan ısı
transferi ve sıcaklık dağılımı metal şekillendirmede büyük bir önem arz
etmektedir. Bu çalışmada 1.1010 W/m2 ve 5.1010
W/m2 gücündeki darbeli laser ile dört farklı malzemenin (çelik,
nikel, tantal ve titanyum)
etkileşimi sırasında malzeme yüzeyinde ve malzeme içerisindeki sıcaklık
dağılımı zamana bağlı olarak incelenmiştir. Laser-metal etkileşimi sırasında,
birinci aşamada ısı iletimi esas alınmış ve buna bağlı olarak elektron kinetik
teori modeli ile malzeme ergime sıcaklığına ulaşana kadar çözüm yapılmıştır.
İkinci aşamada malzeme ergime sıcaklığına ulaştıktan sonra taşınımla olan ısı
transferi klasik metotla ve iletimle olan ısı transferi kinetik teori
yaklaşımıyla birlikte (yarı klasik teori) ele alınarak çözüm yapılmıştır.
Malzeme içerisindeki ve yüzeyindeki sıcaklık dağılımlarının malzeme
termodinamik özellikleriyle değişimini belirlemek gayesiyle dört farklı malzeme
incelenmiş ve elde edilen sıcaklık dağılımları birbiriyle kıyaslanmıştır.
Nümerik çözümler için bir bilgisayar programı geliştirilmiştir.
Kaynakça
- Beck, R. J., Parry, J. P., MacPherson, W. N., Waddie, A., Weston, N. J., Shephard, J. D., & Hand, D. P. (2010). “Application of cooled spatial light modulator for high power nanosecond laser micromachining”, Optics express,18(16), 17059-17065.
- Belforte, D., & Levitt, M. (Eds.). (2012).”The industrial laser handbook”: Edition. Springer Science & Business Media. 1992–1993
- Bulgan, A.T., Koç, A., Keçeciler, A., (1991) “The Heat Transfer Analysis Whıch Happens During Laser-Metal Interaction”, J. Inst Sci.Techno Gazi Univ, Vol.:4, No:1, pp:15-37, January 1991].
- Dekker, A. J. (1958). “Solid State Physics”, Vol. 6.Seitz and D. Turnbull, eds., Academic Press, New York, 251.
- Dekker, A. J. (1981). “In Solid State Physics”, Chapter 16, page no 408, Pub.
- Joe, D. J., Kim, S., Park, J. H., Park, D. Y., Lee, H. E., Im, T. H., ... & Lee, K. J. (2017). “Laser–material interactions for flexible applications”,.Advanced Materials,29(26), 1606586.
- Kittel, C. (2005). “Introduction to solid state physics”, John Wiley & Sons.Inc., New York.
- Koc, A., Yilbas, B. S., Koc, Y., Said, S., Gbadebo, S. A., & Sami, M. (1998).”Material response to laser pulse heating: a kinetic theory approach”,.Optics and lasers in engineering,30(3-4), 327-350.
- Koc, A. (2004). “3-D analysis of temperature distribution in the material during pulsed laser and material interaction”. Heat and mass transfer, 40(9), 697-706.
- Koc Y. (1995). “Kinetik teori yaklaşımı ile lase-malzeme etkileşimi sırasında malzemedeki sıcaklık dağılımının analizi”. Yüksek lisans tezi. Erciyes Üniversitesi Fenbilimleri Enstitüsü., Kayseri,1995
- Maiman, T. H. (1960). “Stimulated optical radiation in ruby. Masers”, Nature, 187,484-.493, 1960].
- Merhav, N. (2018). “Vibrations in a Solid–Phonons and Heat Capacity $$^* $$. In” Statistical Physics for Electrical Engineering (pp. 95-102). Springer, Cham.
- Neto, O. D., & Lima, C. A. S. (1994). “Nonlinear three-dimensional temperature profiles in pulsed laser heated solids”, Journal of Physics D: Applied Physics, 27(9), 1795.
- Remo, J. L., & Adams, R. G. (2008, May). “High energy density laser interactions with planetary and astrophysical materials: methodology and data. In”, High-Power Laser Ablation VII , (Vol. 7005, p. 70052M). International Society for Optics and Photonics.
- Prokhorov, A. M., Konov, V. I., Ursu, I., & Mihailescu, I. N. (1990). “Laser Heating of Metals”, Adam Hilger Series on Optics and Optoelectronics, Bristol: Hilger.
- Qiu, T. Q., & Tien, C. L. (1992). “Short-pulse laser heating on metals”, International Journal of Heat and Mass Transfer, 35(3), 719-726.
- Simon, G., Gratzke, U., & Kroos, J. (1993). “Analysis of heat conduction in deep penetration welding with a time-modulated laser beam”, Journal of Physics D: Applied Physics, 26(5), 862.
- Townes, C. H., & Schawlow, A. L. (1958). “Infrared and optical Masers”, Phys. Rev, 112(6), 1940-1949.
- Yan, J., Zhang, Y., Kim, P., & Pinczuk, A. (2007). “Electric field effect tuning of electron-phonon coupling in graphene”, Physical review letters, 98(16), 166802.
- Yilbas, B. S. (1986). “Heating of metals at a free surface by laser irradiation—an electron kinetic theory approach”, Laser and Particle Beams, 4(2), 275-286.
- Yilbas, B. S., & KOÇ, A. (1986), “Nd+ 3 Laser Rodunda Isıl Gerilmelerin ve Optik Distorsiyonların İncelenmesi”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 2109-119.
- Yilbas, B. S., & Apalak, K. (1987). “The basic concepts of heat transfer mechanism during laser drilling of metals”, Egypt J. of Phys, 18(2), 133-156.
- Yilbaş, B. S., & Yilbaş, Z. (1988). “Some aspects of laser-metal vapour interaction”, Pramana, 31(5), 365-381.
- Yilbas, B. S., Davies, R., Yilbas, Z., & Koc, A. (1990). Analysis of the absorption mechanism during laser-metal interaction. Pramana, 34(6), 473-489.
- Yilbaş, B. S. (1993). “Analytical solution for the heat conduction mechanism appropriate to the laser heating process”, International communications in heat and mass transfer, 20(4), 545-555.
- Yilbaş, B. S., & Şahin, A. Z. (1993). “An approach to convergency of kinetic theory to Fourier theory in relation to laser heating process”, Japanese journal of applied physics, 32(12R), 5646
- Yilbas, B. S., & Sami, M. (1995). “Laser heating mechanisms including evaporation process-semiclassical and kinetic theory approaches”, Japanese journal of applied physics, 34(12R), 6391.
- Yilbas, B. S. (1997). “Laser heating process and experimental validation”, International journal of heat and mass transfer, 40(5), 1131-1143.
- Yilbas, B. S., & Kalyon, M. (2002). “Analytical solution for pulsed laser heating process: convective boundary condition case”, International journal of heat and mass transfer, 45(7), 1571-1582.