Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis, Characterization and Thermal Degradation Kinetics of Poly(methylmethacrylate-co-methacrylic acid)

Yıl 2020, , 134 - 143, 20.03.2020
https://doi.org/10.18185/erzifbed.650459

Öz

In this study, poly (methyl methacrylate-co-methacrylic acid) (poly(MM-co-MA)) was synthesized at      70
O
C in the presence of benzoyl peroxide, methacrylic acid and methyl
methacrylate monomers by free radical addition polymerization method. The
obtained structure of poly (methyl methacrylate-co-methacrylic acid) was characterized by GPC(Gel permeation
chromatography), FT-IR(Fourier transform infrared spectroscopy) and 1H-NMR(Nuclear
magnetic resonance) analyses. (Mn=39800 g/mol PDI: 2.04) Radical
polymerization yield was obtained at 42%. The thermal decomposition kinetics of
poly (methyl methacrylate-co-methacrylic
acid) was also investigated by the thermogravimetric process. The thermal degradation of
the poly(MM-co-MA) was observed in
two steps. Kinetic parameters were computed by the Flynn-Wall-Ozawa process and the Kissinger
process. The first step and second step activation energy was determined to be
108,34 kJ / mol, 253,41 kJ / mol according to the Flynn-Wall-Ozawa process. According to the Kissinger-Akahira-Sunose
process, the activation
energy of the first step was 114,40 kJ/mol and activation energy of the second
step was 231,13 kJ/mol.

Kaynakça

  • References[1] Duarte, ARC, Simplício, AL , González, AV, Paternanault, PS, Coimbra, P, Gil, MH, Sousa, HC, Duarte, CMM. 2007. Supercritical fluid impregnation of a biocompatible polymer for ophthalmic drug delivery. J. Supercrit; 42: 373–377.[2] Govender, T, Stolnik, S, Garnett, MC, Illum, L, Davis, SS. 1999. PLGA nanoparticles preparated by nanoprecipitation: drug loading and release studies of a watersoluble drug, J; 57: 171–185.[3] Lee, S, Jin, BS, Lee, JW. 2006. Thermal degradation kinetics of antimicrobial agent, poly(hexamethylene guanidine) phosphate. Macromolecular Research; 14: 491-498.[4] Wang, D, Das, A, Leuteritz, A, Boldt, R, Häußler, L, Wagenknecht, U, Heinrich, G. 2010. Thermal degradation behaviors of a novel nanocomposite based on polypropylene and Co-Al layered double hydroxide. Polymer Degradation and Stability; 96: 285-290. [5] Yuzay, IE, Auras, R, Soto-Valdez, H, Selke, S. 2010. Effect of synthetic and natural zeolites on morphology and thermal degradation of poly(lactic acid) composites. Polymer Degradation and Stability; 95: 1769-1777. [6] Badia, JD, Santonja-Blasco, L, Morina, R, Ribes-Greus, A. 2006. Thermal analysis applied to the characterization of degradation in soil of polylactide: II. On the thermal stability and thermal decomposition kinetics. Polymer Degradation and Stability; 95: 2192-2199. [7] Hamciuc, C, Vlad-Bubulac, T, Petreus, O, Lisa, G. 2007. Kinetic of thermal degradation in non-isothermal conditions of some phosphorus-containing polyesters and polyesterimides. European Polymer Journal; 43: 980-988.[8] Wang, D, Das, A, Leuteritz, A, Boldt, R, Häußler, L, Wagenknecht, U, Heinrich, G. 2010. Thermal degradation behaviors of a novel nanocomposite based on polypropylene and Co-Al layered double hydroxide. Polymer Degradation and Stability; 96: 285-290. [9] Fraga, F, Nũňez, ER. 2001. Activation energies for the epoxy system BADGE n=0/m-XAD obtained using data from thermogravimetric analysis. Journal of applied polymer science; 80: 776-782.[10] Dogan, F, Akat, H, Balcan, M, Kaya, I, Yurekli, M. 2008. Synthesis, characterization, and thermal degradation kinetics of Poly(decamethylene 2-oxoglutarate). Journal of applied polymer science; 108: 2328-2336. [11] Nanaki, SG, Chrissafis, K, Bikiaris, DN. 2011. Effect of molar ratio on thermal mass loss kinetics of poly(ε-caprolactone-b-propylene adipate) copolymers. Thermochimica Acta; 452: 106–115.

Poli (metilmetakrilat-ko-metakrilik asit) Sentezi, Karakterizasyonu ve Termal Bozunma Kinetiği

Yıl 2020, , 134 - 143, 20.03.2020
https://doi.org/10.18185/erzifbed.650459

Öz

Bu çalışmada, poli (metil metakrilat-ko-metakrilik
asit) (poli (MM-ko-MA))) 70 ° C'de benzoil peroksit , metakrilik asit ve metil
metakrilat monomerleri varlığında serbest radikal  polimerizasyon yöntemiyle sentezlenmiştir.
Poli (metil metakrilat-ko-metakrilik asit) 
yapısı, GPC, FT-IR ve 1H-NMR metotları analizleri ile karakterize
edildi. Mn = 39800 g / mol PDI: 2.04 Radikal polimerizasyon verimi% 42 olarak
elde edildi. Poli (metil metakrilat-ko-metakrilik asit) 'in termal bozunma
kinetiği ayrıca araştırılmıştır. Poli (MM-ko-MA) 'nın ısıl bozulması iki
aşamada gözlenmiştir. Kinetik parametreler Flynn-Wall-Ozawa işlemi ve Kissinger
metodu ile hesaplandı. Birinci adım ve ikinci adımın aktivasyon enerjisinin
Flynn-Wall-Ozawa  metoduna göre 108,34 kJ
/ mol, 253,41 kJ / mol olduğu belirlenmiştir. Kissinger-Akahira-Sunose metoduna
göre, ilk adımın aktivasyon enerjisi 114,40 kJ / mol ve ikinci adımın
aktivasyon enerjisi 231,13 kJ / mol bulunmuştur.

Kaynakça

  • References[1] Duarte, ARC, Simplício, AL , González, AV, Paternanault, PS, Coimbra, P, Gil, MH, Sousa, HC, Duarte, CMM. 2007. Supercritical fluid impregnation of a biocompatible polymer for ophthalmic drug delivery. J. Supercrit; 42: 373–377.[2] Govender, T, Stolnik, S, Garnett, MC, Illum, L, Davis, SS. 1999. PLGA nanoparticles preparated by nanoprecipitation: drug loading and release studies of a watersoluble drug, J; 57: 171–185.[3] Lee, S, Jin, BS, Lee, JW. 2006. Thermal degradation kinetics of antimicrobial agent, poly(hexamethylene guanidine) phosphate. Macromolecular Research; 14: 491-498.[4] Wang, D, Das, A, Leuteritz, A, Boldt, R, Häußler, L, Wagenknecht, U, Heinrich, G. 2010. Thermal degradation behaviors of a novel nanocomposite based on polypropylene and Co-Al layered double hydroxide. Polymer Degradation and Stability; 96: 285-290. [5] Yuzay, IE, Auras, R, Soto-Valdez, H, Selke, S. 2010. Effect of synthetic and natural zeolites on morphology and thermal degradation of poly(lactic acid) composites. Polymer Degradation and Stability; 95: 1769-1777. [6] Badia, JD, Santonja-Blasco, L, Morina, R, Ribes-Greus, A. 2006. Thermal analysis applied to the characterization of degradation in soil of polylactide: II. On the thermal stability and thermal decomposition kinetics. Polymer Degradation and Stability; 95: 2192-2199. [7] Hamciuc, C, Vlad-Bubulac, T, Petreus, O, Lisa, G. 2007. Kinetic of thermal degradation in non-isothermal conditions of some phosphorus-containing polyesters and polyesterimides. European Polymer Journal; 43: 980-988.[8] Wang, D, Das, A, Leuteritz, A, Boldt, R, Häußler, L, Wagenknecht, U, Heinrich, G. 2010. Thermal degradation behaviors of a novel nanocomposite based on polypropylene and Co-Al layered double hydroxide. Polymer Degradation and Stability; 96: 285-290. [9] Fraga, F, Nũňez, ER. 2001. Activation energies for the epoxy system BADGE n=0/m-XAD obtained using data from thermogravimetric analysis. Journal of applied polymer science; 80: 776-782.[10] Dogan, F, Akat, H, Balcan, M, Kaya, I, Yurekli, M. 2008. Synthesis, characterization, and thermal degradation kinetics of Poly(decamethylene 2-oxoglutarate). Journal of applied polymer science; 108: 2328-2336. [11] Nanaki, SG, Chrissafis, K, Bikiaris, DN. 2011. Effect of molar ratio on thermal mass loss kinetics of poly(ε-caprolactone-b-propylene adipate) copolymers. Thermochimica Acta; 452: 106–115.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hakan Akat 0000-0003-4002-5352

Berna Körpınar Bu kişi benim 0000-0003-4002-5352

Yayımlanma Tarihi 20 Mart 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Akat, H., & Körpınar, B. (2020). Poli (metilmetakrilat-ko-metakrilik asit) Sentezi, Karakterizasyonu ve Termal Bozunma Kinetiği. Erzincan University Journal of Science and Technology, 13(1), 134-143. https://doi.org/10.18185/erzifbed.650459