Effects of Loganic Acid isolated from Vinca soneri on Surface Hydrophobicity and Auto-Aggregation of Probiotic Bacteria, Lactobacillus acidophilus and Lactobacillus rhamnosus
Yıl 2020,
, 115 - 122, 20.03.2020
Busenur Çelebi
,
Recep Taş
,
Hüseyin Akşit
,
Hasan Ufuk Celebioglu
Öz
Loganic acid is an ridoid glycoside
found in various plants, having anti-inflammatory activities. In the present
study, loganic acid was isolated from Vinca soneri, used in folk medicine due to laxative,
diuretic and antipyretic effects. Probiotics, a group of functional foods, are
microorganisms that have positive effects on human health when taken into the
body in the required amounts. The most studied and known probiotics are Lactobacillus acidophilus and Lactobacillus rhamnosus. These bacteria
are used as “starters” in various foods or for different formulations, as well
as food supplements. The aim of this study was to investigate the in vitro effects of loganic acid on Lactobacillus acidophilus LA-5 and Lactobacillus rhamnosus GG. Surface
hydrophobicity and auto-aggregation are important functions for a probiotic
bacterium and the results indicated that loganic acid can modulate the
probiotic functions, thus there is a potential for beneficial health benefits
of combinations of loganic acid and probiotic strains.
Destekleyen Kurum
Bartın University
Proje Numarası
2019-FEN-B-007
Teşekkür
The authors thank to Chr. Hansen for providing the lactobacilli.
Kaynakça
- Bahadori, F. (2012). Vinca Alkaloıtlerının Vinca Türlerinden İzolasyonu Ve Yapı Tayini Ve Vinorelbine Yüklenmiş Nano-ilaç Taşıma Sistemlerinin Sitotoksik Aktivitelerinin Araştırılması (Doctoral dissertation, Fen Bilimleri Enstitüsü).
- Baytop, T., 1999. Therapy with Medicinal Plants in Turkey: Past and Present. Nobel Tıp Kitabevi, Istanbul.
Bianco, A., Guiso, M., Passacantilli, P., & Francesconi, A. (1984). Iridoid and Phenypropanoid Glycosides from New Sources. Journal of Natural Products, 47(5), 901-902.
- Bustos I, García-Cayuela T, Hernández-Ledesma B, Peláez C, Requena T, Martínez-Cuesta MC. 2012. Effect of flavan-3-ols on the adhesion of potential probiotic lactobacilli to intestinal cells. J. Agric. Food Chem. 60:9082–88
- Celebioglu HU, Delsoglio M, Brix S, Pessione E, Svensson B. 2018. Plant Polyphenols Stimulate Adhesion to Intestinal Mucosa and Induce Proteome Changes in the Probiotic Lactobacillus acidophilus NCFM. Mol. Nutr. Food Res. 62(4):1–11
- Celebioglu HU, Ejby M, Majumder A, Købler C, Goh YJ, et al. 2016. Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic. Proteomics. 16(9):
- De Souza EL, de Albuquerque TMR, dos Santos AS, Massa NML, de Brito Alves JL. 2019. Potential interactions among phenolic compounds and probiotics for mutual boosting of their health-promoting properties and food functionalities–A review. Crit. Rev. Food Sci. Nutr. 59(10):1645–59
- Dei, L., Li, N., Zu, L. B., Wang, K. J., Zhao, Y. X., & Wang, Z. (2011). Three new iridoid glucosides from the roots of Patrinia scabra. Bull. Korean Chem. Soc, 32(9), 3251.
- Del Carmen Recio M, Giner RM, Manez S, Rios JL. 1994. Structural considerations on the iridoids as anti-inflammatory agents. Planta Med. 60(3):232–34
- dos Santos AS, de Albuquerque TMR, de Brito Alves JL, de Souza EL. 2019. Effects of Quercetin and Resveratrol on in vitro Properties Related to the Functionality of Potentially Probiotic Lactobacillus Strains. Front. Microbiol. 10(September):1–13
- Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, et al. 2014. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11(August 2014):9
- Kos B, Susković J, Vuković S, Simpraga M, Frece J, Matosić S. 2003. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J. Appl. Microbiol. 94(6):981–87
- Koyuncu, M., Ekşi, G., & Özkan, A. M. G. (2015, August). Vinca ispartensis (Apocynaceae), a new species from Turkey. In Annales Botanici Fennici (Vol. 52, No. 5–6, pp. 340-345). Finnish Zoological and Botanical Publishing Board.
- Koyuncu, M. (2012). A new species of Vinca (Apocynaceae) from eastern Anatolia, Turkey. Turkish journal of botany, 36(3), 247-251.
- Krasowska A, Sigler K. 2014. How microorganisms use hydrophobicity and what does this mean for human needs? Front. Cell. Infect. Microbiol.
- Lebeer S, Vanderleyden J, De Keersmaecker SCJ. 2008. Genes and molecules of lactobacilli supporting probiotic action. Microbiol. Mol. Biol. Rev. 72(4):728–64.
- Mills S, Stanton C, Fitzgerald GF, Ross RP. 2011. Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again. Microb. Cell Fact. 10 Suppl 1(Suppl 1):S19
- Puupponen-Pimia R, Aura AM, Oksman-Caldentey K-M, Myllarinen P, Saarela M, et al. 2002. Development of functional ingredients for gut health. Trends Food Sci. Technol. 13:3–11
- Sanders ME, Klaenhammer TR. 2001. Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J. Dairy Sci. 84(2):319–31
- Sezer, E. N. Ş., Uysal, T. Volatile and Phenolic Compositions of the Leaves of Two Vinca L. Species from Turkey. Current Perspectives on Medicinal and Aromatic Plants (CUPMAP), 1(2), 103-110.
- Spiller R. 2008. Probiotics and prebiotics in irritable bowel syndrome. Aliment. Pharmacol. Ther. 28, 385–396.
- Şöhretoğlu, D., Masullo, M., Piacente, S., & Kirmizibekmez, H. (2013). Iridoids, monoterpenoid glucoindole alkaloids and flavonoids from Vinca major. Biochemical Systematics and Ecology, 49, 69-72.
- Wei S, Chi H, Kodama H, Chen G. 2013. Anti-inflammatory effect of three iridoids in human neutrophils. Nat. Prod. Res. 27(10):911–15
- Yadav H, Lee JH, Lloyd J, Walter P, Rane SG. 2013. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J. Biol. Chem. 288(35):25088–97
Vinca soneri'den İzole Edilen Loganic Asidin Probiyotik Bakteriler Lactobacillus acidophilus ve Lactobacillus rhamnosus'un Yüzey Hidrofobisitesi ve Oto-Agregasyonu Üzerine Etkileri
Yıl 2020,
, 115 - 122, 20.03.2020
Busenur Çelebi
,
Recep Taş
,
Hüseyin Akşit
,
Hasan Ufuk Celebioglu
Öz
Öz
Loganic asit, çeşitli bitkilerde bulunan ve anti-enflamatuar aktivitelere
sahip bir iridoid glikozittir. Bu çalışmada loganik asit, laksatif, idrar
söktürücü ve antipiretik etkiler nedeniyle halk hekimliğinde kullanılan Vinca soneri bitkisinden izole edilmiştir.
Bir grup fonksiyonel gıda olan probiyotikler, vücuda yeteri miktarlarda
alındığında insan sağlığını olumlu yönde etkileyen mikroorganizmalardır. En
çok çalışılan ve bilinen probiyotikler Lactobacillus
acidophilus ve Lactobacillus
rhamnosus bakterileri olmakla beraber bu bakteriler, çeşitli gıdalarda
veya farklı formülasyonlarda, ayrıca besin takviyelerinde “starter” olarak
kullanılır. Bu çalışmanın amacı, loganik asidin Lactobacillus acidophilus LA-5 ve Lactobacillus rhamnosus GG üzerindeki in vitro etkilerini araştırmaktır. Yüzey hidrofobisitesi ve
oto-agregasyon, bir probiyotik bakteri için önemli fonksiyonlardır ve bu
çalışmanın sonuçları, loganik asidin, probiyotik fonksiyonları modüle
edebileceğini, dolayısıyla, loganik asit ve probiyotik suşların
kombinasyonlarının daha iyi bir potansiyele sahip olabileceğini göstermiştir.
|
Proje Numarası
2019-FEN-B-007
Kaynakça
- Bahadori, F. (2012). Vinca Alkaloıtlerının Vinca Türlerinden İzolasyonu Ve Yapı Tayini Ve Vinorelbine Yüklenmiş Nano-ilaç Taşıma Sistemlerinin Sitotoksik Aktivitelerinin Araştırılması (Doctoral dissertation, Fen Bilimleri Enstitüsü).
- Baytop, T., 1999. Therapy with Medicinal Plants in Turkey: Past and Present. Nobel Tıp Kitabevi, Istanbul.
Bianco, A., Guiso, M., Passacantilli, P., & Francesconi, A. (1984). Iridoid and Phenypropanoid Glycosides from New Sources. Journal of Natural Products, 47(5), 901-902.
- Bustos I, García-Cayuela T, Hernández-Ledesma B, Peláez C, Requena T, Martínez-Cuesta MC. 2012. Effect of flavan-3-ols on the adhesion of potential probiotic lactobacilli to intestinal cells. J. Agric. Food Chem. 60:9082–88
- Celebioglu HU, Delsoglio M, Brix S, Pessione E, Svensson B. 2018. Plant Polyphenols Stimulate Adhesion to Intestinal Mucosa and Induce Proteome Changes in the Probiotic Lactobacillus acidophilus NCFM. Mol. Nutr. Food Res. 62(4):1–11
- Celebioglu HU, Ejby M, Majumder A, Købler C, Goh YJ, et al. 2016. Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic. Proteomics. 16(9):
- De Souza EL, de Albuquerque TMR, dos Santos AS, Massa NML, de Brito Alves JL. 2019. Potential interactions among phenolic compounds and probiotics for mutual boosting of their health-promoting properties and food functionalities–A review. Crit. Rev. Food Sci. Nutr. 59(10):1645–59
- Dei, L., Li, N., Zu, L. B., Wang, K. J., Zhao, Y. X., & Wang, Z. (2011). Three new iridoid glucosides from the roots of Patrinia scabra. Bull. Korean Chem. Soc, 32(9), 3251.
- Del Carmen Recio M, Giner RM, Manez S, Rios JL. 1994. Structural considerations on the iridoids as anti-inflammatory agents. Planta Med. 60(3):232–34
- dos Santos AS, de Albuquerque TMR, de Brito Alves JL, de Souza EL. 2019. Effects of Quercetin and Resveratrol on in vitro Properties Related to the Functionality of Potentially Probiotic Lactobacillus Strains. Front. Microbiol. 10(September):1–13
- Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, et al. 2014. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11(August 2014):9
- Kos B, Susković J, Vuković S, Simpraga M, Frece J, Matosić S. 2003. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J. Appl. Microbiol. 94(6):981–87
- Koyuncu, M., Ekşi, G., & Özkan, A. M. G. (2015, August). Vinca ispartensis (Apocynaceae), a new species from Turkey. In Annales Botanici Fennici (Vol. 52, No. 5–6, pp. 340-345). Finnish Zoological and Botanical Publishing Board.
- Koyuncu, M. (2012). A new species of Vinca (Apocynaceae) from eastern Anatolia, Turkey. Turkish journal of botany, 36(3), 247-251.
- Krasowska A, Sigler K. 2014. How microorganisms use hydrophobicity and what does this mean for human needs? Front. Cell. Infect. Microbiol.
- Lebeer S, Vanderleyden J, De Keersmaecker SCJ. 2008. Genes and molecules of lactobacilli supporting probiotic action. Microbiol. Mol. Biol. Rev. 72(4):728–64.
- Mills S, Stanton C, Fitzgerald GF, Ross RP. 2011. Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again. Microb. Cell Fact. 10 Suppl 1(Suppl 1):S19
- Puupponen-Pimia R, Aura AM, Oksman-Caldentey K-M, Myllarinen P, Saarela M, et al. 2002. Development of functional ingredients for gut health. Trends Food Sci. Technol. 13:3–11
- Sanders ME, Klaenhammer TR. 2001. Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J. Dairy Sci. 84(2):319–31
- Sezer, E. N. Ş., Uysal, T. Volatile and Phenolic Compositions of the Leaves of Two Vinca L. Species from Turkey. Current Perspectives on Medicinal and Aromatic Plants (CUPMAP), 1(2), 103-110.
- Spiller R. 2008. Probiotics and prebiotics in irritable bowel syndrome. Aliment. Pharmacol. Ther. 28, 385–396.
- Şöhretoğlu, D., Masullo, M., Piacente, S., & Kirmizibekmez, H. (2013). Iridoids, monoterpenoid glucoindole alkaloids and flavonoids from Vinca major. Biochemical Systematics and Ecology, 49, 69-72.
- Wei S, Chi H, Kodama H, Chen G. 2013. Anti-inflammatory effect of three iridoids in human neutrophils. Nat. Prod. Res. 27(10):911–15
- Yadav H, Lee JH, Lloyd J, Walter P, Rane SG. 2013. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J. Biol. Chem. 288(35):25088–97