Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination Of Pyrolysis Kinetics Of Pistachio Shell And Cranberry Seed

Yıl 2020, , 847 - 856, 31.08.2020
https://doi.org/10.18185/erzifbed.680647

Öz

Pyrolytic degradation behavior of pistachio shell and cranberry seed were investigated by means of thermal analysis techniques such as thermogravimetric (TG) and derivative thermogravimetric (DTG). Pyrolysis study of pistachio shell and cranberry seed, which are the sources of plant biomass, are carried out at four different heating rates (2.5, 5, 10 and 20 K min-1) in the temperature range of 300-1173 K in a TGA equipment. The activation energy and pre-exponential factor were determined using different methods as Kissinger–Akahira–
Sunose (KAS) and Flyn–Wall–Ozawa (FWO). The average activation energies (Ea) and pre-exponential factor (A) obtained from both models for the pyrolytic degradation behavior of pistachio shell and cranberry seed were found as: Ea=146.5 kJ mol-1 and A=17.99 min−1 for KAS; Ea=159.3 kJ mol-1 and A= 34.15 min−1 for FWO and Ea=191.1 kJ mol-1
and A=25.93 min−1 for KAS; Ea=210.7 kJ mol-1 and A= 42.63 min−1 for FWO, respectively.

Kaynakça

  • Çağlar, A., Demirbaş, A. (2000). Conversion of Cotton Cocoon Shell to Liquid Products by Pyrolysis, Energy Conversion and Management, 41, 1749 – 1756.
  • Çağlar, A., Demirbaş, A. (2002) Hydrogen Rich Gas Mixture from Olive Husk via Pyrolysis, Energy Conversion and Management, 43, 109 - 117.
  • Calkins, M. (2009). Materials for sustainable sites, John Wiley & Sons Inc., Hoboken, New Jersey, 14-24.
  • Jeguirim, M., Trouvé, G. (2009). Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis, Bioresource Technology, 100, 4026–4031.
  • Kızılca M., Copur M. (2016). Investigation of the Thermal Decomposition Kinetics of Chalcopyrite Ore Concentrate using Thermogravimetric Data, Chemical Engineering Communications, 203, 692-704.
  • Orfao,J.M., Martins, F.G. (2002). “Kinetic analysis of thermogravimetric data obtained under linear temperature programming, a method based on calculations of the temperature integral by interpolations”, Thermochimica Acta, 390(1-2), 195-211.
  • Sharma R., K., Wooten J. B., Baliga V. L., Lin1 X., Chan W. G., Hajaligol M. R. (2004). Characterization of Chars from Pyrolysis of Lignin, Fuel, 83, 1469–1482.
  • Tonbul, Y., Yurdakoç, K. (2001). Thermogravimetric Investigation of the Dehydration Kinetics of KSF, K10 and Turkish Bentonite, Turkish Journal Of Chemistry, 25, 333-339.
  • Zhang L., Xu C. (2010). Champagne P., Overview of recent advances in thermo-chemical conversion of biomass Energy Conversion

Determination Of Pyrolysis Kinetics Of Pistachio Shell And Cranberry Seed

Yıl 2020, , 847 - 856, 31.08.2020
https://doi.org/10.18185/erzifbed.680647

Öz

Dünya nüfusunun hızlı büyümesine ve gelişen teknolojiye paralel olarak, enerji talebi sürekli artmaktadır. Ancak fosil enerji kaynak rezervlerinin sınırlı ve yakın gelecekte tükenmesi, alternatif enerji kaynaklarının daha verimli değerlendirilmesini gerektirmektedir. Alternatif enerji kaynakları arasında güneş, rüzgar, hidrolik, jeotermal ve biyokütle enerji kaynakları yer alır. Biyokütle en önemli alternatif enerji kaynağıdır. Fiziksel, termokimyasal ve biyokimyasal dönüşüm süreçlerini içeren üç tip biyokütle dönüştürme teknolojisi vardır. Biyokütleden termokimyasal dönüşüm, karbonizasyon ve piroliz gibi işlemlerle gerçekleştirilir. Piroliz işlemi katı hal bozunmasıdır ve kinetik parametreleri Termogravimetrik (TG) ve türev termogravimetrik (DTG) gibi termal analiz teknikleri ile belirlenir. Bitki biyokütlesinin kaynağı olan şam fıstık kabuğu ve kızılcık tohumunun piroliz çalışması, 10 mL hava akış hızı altında. Min-1 ve dört farklı ısıtma hızında (2.5, 5, 10 ve 20 K min-1) gerçekleştirilir. TGA ekipmanında 300-1173 K sıcaklık aralığında. Kinetik parametreler ve piroliz mekanizmaları Kissinger – Akahira – Sunose (KAS) ve Flyn – Wall – Ozawa (FWO) gibi farklı yöntemler kullanılarak belirlenmiştir

Kaynakça

  • Çağlar, A., Demirbaş, A. (2000). Conversion of Cotton Cocoon Shell to Liquid Products by Pyrolysis, Energy Conversion and Management, 41, 1749 – 1756.
  • Çağlar, A., Demirbaş, A. (2002) Hydrogen Rich Gas Mixture from Olive Husk via Pyrolysis, Energy Conversion and Management, 43, 109 - 117.
  • Calkins, M. (2009). Materials for sustainable sites, John Wiley & Sons Inc., Hoboken, New Jersey, 14-24.
  • Jeguirim, M., Trouvé, G. (2009). Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis, Bioresource Technology, 100, 4026–4031.
  • Kızılca M., Copur M. (2016). Investigation of the Thermal Decomposition Kinetics of Chalcopyrite Ore Concentrate using Thermogravimetric Data, Chemical Engineering Communications, 203, 692-704.
  • Orfao,J.M., Martins, F.G. (2002). “Kinetic analysis of thermogravimetric data obtained under linear temperature programming, a method based on calculations of the temperature integral by interpolations”, Thermochimica Acta, 390(1-2), 195-211.
  • Sharma R., K., Wooten J. B., Baliga V. L., Lin1 X., Chan W. G., Hajaligol M. R. (2004). Characterization of Chars from Pyrolysis of Lignin, Fuel, 83, 1469–1482.
  • Tonbul, Y., Yurdakoç, K. (2001). Thermogravimetric Investigation of the Dehydration Kinetics of KSF, K10 and Turkish Bentonite, Turkish Journal Of Chemistry, 25, 333-339.
  • Zhang L., Xu C. (2010). Champagne P., Overview of recent advances in thermo-chemical conversion of biomass Energy Conversion
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hatice Bayrakçeken 0000-0003-2472-9974

Meltem Kızılca 0000-0001-8734-2502

Yayımlanma Tarihi 31 Ağustos 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Bayrakçeken, H., & Kızılca, M. (2020). Determination Of Pyrolysis Kinetics Of Pistachio Shell And Cranberry Seed. Erzincan University Journal of Science and Technology, 13(2), 847-856. https://doi.org/10.18185/erzifbed.680647