Araştırma Makalesi
BibTex RIS Kaynak Göster

Milimetre Uzunluğunda Dikey Hizalanmış Karbon Nanotüpler Büyütmek için Sıcaklığa Bağlı Parametrelerin İncelenmesi ve Optimize Edilmesi

Yıl 2020, , 1354 - 1361, 31.12.2020
https://doi.org/10.18185/erzifbed.714448

Öz

Bu çalışma katalizör hazırlama sıcaklığı ve büyütme sıcaklığı gibi sıcaklığa bağlı parametrelerin, dikey hizalanmış karbon nanotüp (DHKNT) yığınlarının boyları üzerine olan etkilerini araştırmayı ve uzun DHKNT’ler büyütmek için bu parametreleri optimize etmeyi amaçlamıştır. Bu parametreler, DHKNT büyümesine aracılık eden Fe katalizör tabakasının üç farklı kalınlığını içeren örnekler üzerinde test edilip optimize edilmiştir. Farklı kalınlıklardaki Fe katalizör tabakalarından büyüyen DHKNT yığınlarının boyları, katalizör hazırlama sıcaklığının 500 ℃’den 800 ℃’ye arttırılması ile farklı hızlarda doğrusal bir azalma eğilimi göstermişlerdir. Diğer taraftan uzun DHKNT büyütmek için gerekli optimum sıcaklığın Fe katalizör tabakasının kalınlığından bağımsız olduğu fakat farklı kalınlıklardaki Fe katalizör tabakalarından büyüyen DHKNT yığınlarının yükseklik dağılımlarının değişiklikler gösterdiği bulunmuştur. Bu parametrelerin optimizasyonu sonucunda oldukça düşük gaz oranları kullanılarak 30 dakikada üç farklı kalınlıktaki Fe katalizör tabakalardan milimetre uzunluğunda DHKNT yığınlarının büyütülmesinin mümkün olduğunu bulduk. Raman spektroskopisi, büyütülen DHKNT’lerin düzensizliğinin oldukça düşük olduğunu göstermiştir. Bu çalışmada ulaşılan düşük miktardaki gaz kullanımı, çevreci ve ekonomik DHKNT üretimi imkanı sağlamaktadır.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

118M586

Teşekkür

Makalede Ekli

Kaynakça

  • Che, Y., Chen, H., Gui, H., Liu, J., Liu, B. and Zhou, C., 2014. “Review of carbon nanotube nanoelectronics and macroelectronics”, Semiconductor Science and Technology, 29(7), 073001.
  • Corso, B.L., Perez, I., Sheps, T., Sims, P.C., Gül, O.T. and Collins, P.G., 2014. “Electrochemical charge-transfer resistance in carbon nanotube composites”, Nano letters, 14(3), 1329-1336.
  • De Volder, M. F., Tawfick, S. H., Baughman, R. H., & Hart, A. J. 2013. “Carbon nanotubes: present and future commercial applications”, science, 339(6119), 535-539.
  • Dresselhaus, M.S., Dresselhaus, G., Saito, R. and Jorio, A., 2005. “Raman spectroscopy of carbon nanotubes”, Physics reports, 409(2), 47-99.
  • Gül, O.T., Pugliese, K.M., Choi, Y., Sims, P.C., Pan, D., Rajapakse, A.J., Weiss, G.A. and Collins, P.G., 2016. “Single molecule bioelectronics and their application to amplification-free measurement of DNA lengths”, Biosensors, 6(3), 29.
  • Huh, Y., Green, M.L., Kim, Y.H., Lee, J.Y. and Lee, C.J., 2005. “Control of carbon nanotube growth using cobalt nanoparticles as catalyst”, Applied surface science, 249(1-4), 145-150.
  • Jacobs, C.B., Peairs, M.J. and Venton, B.J., 2010. “Carbon nanotube based electrochemical sensors for biomolecules”, Analytica chimica acta, 662(2), 105-127.
  • Jorio, A., Dresselhaus, G. and Dresselhaus, M.S. eds., (2007). “Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications”, Springer Science & Business Media, (Vol. 111).
  • Lee, S.W., Yabuuchi, N., Gallant, B.M., Chen, S., Kim, B.S., Hammond, P.T. and Shao-Horn, Y., 2010. “High-power lithium batteries from functionalized carbon-nanotube electrodes”, Nature nanotechnology, 5(7), 531.
  • Liu, B., Wu, F., Gui, H., Zheng, M. and Zhou, C., 2017. “Chirality-controlled synthesis and applications of single-wall carbon nanotubes”, ACS nano, 11(1), 31-53.
  • Mi, W., Lin, Y.S. and Li, Y., 2007. “Vertically aligned carbon nanotube membranes on macroporous alumina supports”, Journal of Membrane Science, 304(1-2), 1-7.
  • Pan, D., Fuller, E.J., Gül, O.T. and Collins, P.G., 2015. “One-dimensional Poole-Frenkel conduction in the single defect limit”, Nano letters, 15(8), 5248-5253.
  • Shokrieh, M.M. and Rafiee, R., 2010. “A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites”, Mechanics of composite materials, 46(2), 155-172.
  • Su, M., Zheng, B. and Liu, J., 2000. “A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity”, Chemical Physics Letters, 322(5), 321-326.
  • Takagi, D., Homma, Y., Hibino, H., Suzuki, S. and Kobayashi, Y., 2006. “Single-walled carbon nanotube growth from highly activated metal nanoparticles”, Nano letters, 6(12), 2642-2645.
  • Wang, B., Ma, Y., Li, N., Wu, Y., Li, F. and Chen, Y., 2010. “Facile and scalable fabrication of well‐aligned and closely packed single‐walled carbon nanotube films on various substrates”, Advanced Materials, 22(28), 3067-3070.

Investigation and Optimization of Temperature Dependent Parameters for Growing Millimeter-Long Vertically Aligned Carbon Nanotubes

Yıl 2020, , 1354 - 1361, 31.12.2020
https://doi.org/10.18185/erzifbed.714448

Öz

This study aimed to investigate effects of temperature dependent parameters on vertically aligned carbon nanotube (VACNT) forest height such as catalyst treatment temperature and growth temperature and optimize these parameters to grow long VACNT forests. These growth parameters were examined and optimized on samples including three different thicknesses of Fe catalyst layers which catalyze VACNT growth. Heights of VACNT forests grown on different Fe catalyst layers linearly decreased at various rates with the increment of the catalyst treatment temperature from 500 ℃ to 800 ℃. Moreover, optimum growth temperature to grow long VACNTs was found to be independent from Fe catalyst layer thickness while their height distributions showed variations. As a result of optimization of these parameters, we have found that it is possible to grow millimeter long VACNT forests from all three Fe catalyst layers with substantially low gas flows in 30 min growth. Raman spectroscopy approved that disorder of grown VACNTs is very low. Use of low gas feedstock, achieved in this study, ensures green and economic production of VACNTs.

Proje Numarası

118M586

Kaynakça

  • Che, Y., Chen, H., Gui, H., Liu, J., Liu, B. and Zhou, C., 2014. “Review of carbon nanotube nanoelectronics and macroelectronics”, Semiconductor Science and Technology, 29(7), 073001.
  • Corso, B.L., Perez, I., Sheps, T., Sims, P.C., Gül, O.T. and Collins, P.G., 2014. “Electrochemical charge-transfer resistance in carbon nanotube composites”, Nano letters, 14(3), 1329-1336.
  • De Volder, M. F., Tawfick, S. H., Baughman, R. H., & Hart, A. J. 2013. “Carbon nanotubes: present and future commercial applications”, science, 339(6119), 535-539.
  • Dresselhaus, M.S., Dresselhaus, G., Saito, R. and Jorio, A., 2005. “Raman spectroscopy of carbon nanotubes”, Physics reports, 409(2), 47-99.
  • Gül, O.T., Pugliese, K.M., Choi, Y., Sims, P.C., Pan, D., Rajapakse, A.J., Weiss, G.A. and Collins, P.G., 2016. “Single molecule bioelectronics and their application to amplification-free measurement of DNA lengths”, Biosensors, 6(3), 29.
  • Huh, Y., Green, M.L., Kim, Y.H., Lee, J.Y. and Lee, C.J., 2005. “Control of carbon nanotube growth using cobalt nanoparticles as catalyst”, Applied surface science, 249(1-4), 145-150.
  • Jacobs, C.B., Peairs, M.J. and Venton, B.J., 2010. “Carbon nanotube based electrochemical sensors for biomolecules”, Analytica chimica acta, 662(2), 105-127.
  • Jorio, A., Dresselhaus, G. and Dresselhaus, M.S. eds., (2007). “Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications”, Springer Science & Business Media, (Vol. 111).
  • Lee, S.W., Yabuuchi, N., Gallant, B.M., Chen, S., Kim, B.S., Hammond, P.T. and Shao-Horn, Y., 2010. “High-power lithium batteries from functionalized carbon-nanotube electrodes”, Nature nanotechnology, 5(7), 531.
  • Liu, B., Wu, F., Gui, H., Zheng, M. and Zhou, C., 2017. “Chirality-controlled synthesis and applications of single-wall carbon nanotubes”, ACS nano, 11(1), 31-53.
  • Mi, W., Lin, Y.S. and Li, Y., 2007. “Vertically aligned carbon nanotube membranes on macroporous alumina supports”, Journal of Membrane Science, 304(1-2), 1-7.
  • Pan, D., Fuller, E.J., Gül, O.T. and Collins, P.G., 2015. “One-dimensional Poole-Frenkel conduction in the single defect limit”, Nano letters, 15(8), 5248-5253.
  • Shokrieh, M.M. and Rafiee, R., 2010. “A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites”, Mechanics of composite materials, 46(2), 155-172.
  • Su, M., Zheng, B. and Liu, J., 2000. “A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity”, Chemical Physics Letters, 322(5), 321-326.
  • Takagi, D., Homma, Y., Hibino, H., Suzuki, S. and Kobayashi, Y., 2006. “Single-walled carbon nanotube growth from highly activated metal nanoparticles”, Nano letters, 6(12), 2642-2645.
  • Wang, B., Ma, Y., Li, N., Wu, Y., Li, F. and Chen, Y., 2010. “Facile and scalable fabrication of well‐aligned and closely packed single‐walled carbon nanotube films on various substrates”, Advanced Materials, 22(28), 3067-3070.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Osman Tolga Gül 0000-0003-2033-1205

Proje Numarası 118M586
Yayımlanma Tarihi 31 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Gül, O. T. (2020). Investigation and Optimization of Temperature Dependent Parameters for Growing Millimeter-Long Vertically Aligned Carbon Nanotubes. Erzincan University Journal of Science and Technology, 13(3), 1354-1361. https://doi.org/10.18185/erzifbed.714448