Araştırma Makalesi
BibTex RIS Kaynak Göster

Near Soft Connected Spaces

Yıl 2020, , 788 - 802, 31.08.2020
https://doi.org/10.18185/erzifbed.728964

Öz

Near soft sets are considered as mathematical tools for dealing with ambiguities. In this study, we describe the near soft connectedness in near soft topological spaces, and introduce its concerned properties. Near soft sets are considered as mathematical tools for dealing with ambiguities. In this study, we describe the near soft connectedness in near soft topological spaces, and introduce its concerned properties. Near soft sets are considered as mathematical tools for dealing with ambiguities. In this study, we describe the near soft connectedness in near soft topological spaces, and introduce its concerned properties.

Kaynakça

  • Acar, U., Koyuncu, F. and Tanay B. 2010. “Soft Sets and Soft Rings”, Comp. Math. Appl., 59, 3458-3463.
  • Aktas, H. and Cağman, N. 2007. “Soft Sets and Soft Groups”, Inform. Sciences, 177, 2726-2735.
  • Ali, I. M., Feng, F. Liu, X.Y., Min, W.K. and Shabir, M., 2009. “On Some New Operations in Soft Set Theory”, Comp. Math. Appl. 57, 1547-1553.
  • Aygunoğlu, A. and Aygun, H. 2011. “Some notes on soft topological spaces”, Neural Computing and Applications, 21(1), 113-119.
  • Cağman, N., Karataş, S. and Enginoğlu, S. 2011. “Soft Topology”, Computers and Mathematics with Applications, 62, 351-358.
  • Cantor, G., 1883. “Uber Unendliche, Lineare Punktmannigfaltigkeiten” 5, Mathematische Annalen 21: 545–586. In [Cantor, 1932].
  • Georgiou, D.N. Megaritis, A.C. and Petropoulos, V.I. 2013. “On Soft Topological Spaces”, Appl. Math. Inf. Sci. 7(5), 1889-1901.
  • Henry, C. 2010. “Near sets: Theory and applications”, PhD Thesis, Department of Electrical & Computer Engineering, University of Manitoba Canada.
  • Henry, C. and Peters, J. F., “Near Set Evaluation and Recognition (NEAR) System V2.0”, University of Manitoba Computational Intelligence Laboratory Technical Report, TR-2010-017.
  • Henry, C. and Smith, G. “Proximity System”, University of Manitoba Computational Intelligence Laboratory Technical Report, TR-2012-021.
  • Hussain, S. 2015. “A Note On Soft Connectedness, Journal of the Egyptian Matematical Society, 23, 6-11.
  • Hassanien, A. E., Abraham, A., Peters, J. F., Schaefer, G. and Henry, C. 2009. “Rough Sets and Near Sets in Medical Imaging: A Review, IEEE Trans Info. Tech. in Biomedicine, 13(6), 955-968.
  • Inan, E. and Ozturk, M. A. 2012 “Near Groups In Nearness Approximation Spaces”, Hacettepe Jr. of Math. and Stat., 41, 544-558.
  • Karataş, S., Kılıç, B. and Tellioğlu, M., 2015. “On Fuzzy Soft Connected Topological Spaces”, Journal of Linear and Topological Algebra, 03, 229-240.
  • Maji, P. K., Biswas, R. and Roy, A. R. 2003. “Soft Set Theory”, Comput. Math. Appl. 45, 555-562.
  • Maji, P. K., Roy, A. R. and Biswas, R. 2002. “An Application of Soft Sets In A Decision Making Problem”, Comput. Math. Appl. 44, 1077-1083.
  • Molodtsov, D. 1999. “Soft Set Theory-First Results”, Computers & Mathematics with Applications, 37(4-5), 19-31.
  • Ozkan, A. 2019. “On Near Soft Sets”, Turkish Journal of Mathematics, 43(2), 1005-1017.
  • Pawlak, Z. 1982. “Rough Sets”, Int. J. Comput. Sci. 11, 341–356.
  • Pawlak Z. and Peters, J. F. 2002-2007. “Jack Blisko (How near) Systemy Wspomagania”, 63 Decyzji I, 57, 109, ISBN:83-920730-4-5, 2002-2007.
  • Pei, D. and Miao, 2005. “From Soft Sets to Information Systems, In: Proceedings of Granular Computing (Eds: X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R.R. Yager, B.Zhang)”, Institute of Electrical and Electronics Engineers, 2, 617-621.
  • Peters, J. F. 2007. “Near Sets, Special Theory About Nearness of Objects”, Fund. Inform, 57, 407-433.
  • Peters, J. F. 2007. “Near Sets. General Theory About Nearness of Objects”, Appl. Math.Sci., 2609-2629.
  • Peters J. F. and Wasilewski, P. 2009. “Foundations of Near Sets”, Inform. Sci., 179, 3091-3109.
  • Peters, J. F. 2005. “Rough Ethology: Towards A Biologically-Inspired Study of Collective Behavior in Intelligent Systems with Approximation Spaces”, Transactions On Rough Sets, III, LNCS 3400, 153-174.
  • Peters J. F. and Henry C. 2006. “Reinforcement Learning with Approximation Spaces”, Fund. Inform, 71(2-3), 323-349. Peters, J. F., Ramanna, S. 2009 “Affinities Between Perceptual Granules: Foundations and Perspectives”, In Human-centric information processing Through Granular Modelling sci 182, Eds A, Bargiela and W. Pedrycz, Springer-Verlag, Berlin.
  • Peters, J. F, Henry, C. and Gunderson, D. S. 2007. “Biologically-Inspired Approximate Adaptive Learning Control Strategies: A Rough Set Approach”, International Journal of Hybrid Intelligent Systems, 4(4), 203-216.
  • Peters, J. F. and Naimpally, S. 2012. “Applications of near sets”, Notices Amer. Math. Soc., 59(4), 536-542.
  • Peters, J. F. 2010. “Corrigenda and Addenda: Tolerance Near Sets and Image Correspondence, Int. J. Bio-Inspired Comput., 2(5), 310-318.
  • Riesz, 1908. “Stetigkeitsbegriff und abstrakte mengenlehre”, Proceedings of the International Mathematical Congress of Mathematicians, Series I, Fourth Congress, Rome, 2, 18-24; Kraus Reprint Limited, Nendeln/Liechtenstein, 1967.
  • Tasbozan, H. Icen, I. Bagirmaz N. and Ozcan, A.F. 2017. “Soft Sets and Soft Topology On Nearness Approximation Spaces, Filomat, 31(13), 4117-4125.
  • Zhao, X. D., 1986. “Connectedness On Fuzzy Topological Spaces”, Fuzzy Sets and Systems, 20, 223-240.
  • Wolski, M. 2010. “Perception and Classification. A Note On Near Sets and Rough Sets”, Fund. Inform., 101, 143-155.

Yakın Esnek Bağlantılı Uzaylar

Yıl 2020, , 788 - 802, 31.08.2020
https://doi.org/10.18185/erzifbed.728964

Öz

Yakın esnek topolojik uzaylar, belirsizlikler ile başa çıkmak için matematiksel araçlar olarak kabul edilir. Bu çalışmada, yakın esnek topolojik uzaylarda yakın esnek bağlantılığı tanımlamak ve ilgili özelliklerini sunmaktayız.Yakın esnek topolojik uzaylar, belirsizlikler ile başa çıkmak için matematiksel araçlar olarak kabul edilir. Bu çalışmada, yakın esnek topolojik uzaylarda yakın esnek bağlantılığı tanımlamak ve ilgili özelliklerini sunmaktayız.Yakın esnek topolojik uzaylar, belirsizlikler ile başa çıkmak için matematiksel araçlar olarak kabul edilir. Bu çalışmada, yakın esnek topolojik uzaylarda yakın esnek bağlantılığı tanımlamak ve ilgili özelliklerini sunmaktayız.

Kaynakça

  • Acar, U., Koyuncu, F. and Tanay B. 2010. “Soft Sets and Soft Rings”, Comp. Math. Appl., 59, 3458-3463.
  • Aktas, H. and Cağman, N. 2007. “Soft Sets and Soft Groups”, Inform. Sciences, 177, 2726-2735.
  • Ali, I. M., Feng, F. Liu, X.Y., Min, W.K. and Shabir, M., 2009. “On Some New Operations in Soft Set Theory”, Comp. Math. Appl. 57, 1547-1553.
  • Aygunoğlu, A. and Aygun, H. 2011. “Some notes on soft topological spaces”, Neural Computing and Applications, 21(1), 113-119.
  • Cağman, N., Karataş, S. and Enginoğlu, S. 2011. “Soft Topology”, Computers and Mathematics with Applications, 62, 351-358.
  • Cantor, G., 1883. “Uber Unendliche, Lineare Punktmannigfaltigkeiten” 5, Mathematische Annalen 21: 545–586. In [Cantor, 1932].
  • Georgiou, D.N. Megaritis, A.C. and Petropoulos, V.I. 2013. “On Soft Topological Spaces”, Appl. Math. Inf. Sci. 7(5), 1889-1901.
  • Henry, C. 2010. “Near sets: Theory and applications”, PhD Thesis, Department of Electrical & Computer Engineering, University of Manitoba Canada.
  • Henry, C. and Peters, J. F., “Near Set Evaluation and Recognition (NEAR) System V2.0”, University of Manitoba Computational Intelligence Laboratory Technical Report, TR-2010-017.
  • Henry, C. and Smith, G. “Proximity System”, University of Manitoba Computational Intelligence Laboratory Technical Report, TR-2012-021.
  • Hussain, S. 2015. “A Note On Soft Connectedness, Journal of the Egyptian Matematical Society, 23, 6-11.
  • Hassanien, A. E., Abraham, A., Peters, J. F., Schaefer, G. and Henry, C. 2009. “Rough Sets and Near Sets in Medical Imaging: A Review, IEEE Trans Info. Tech. in Biomedicine, 13(6), 955-968.
  • Inan, E. and Ozturk, M. A. 2012 “Near Groups In Nearness Approximation Spaces”, Hacettepe Jr. of Math. and Stat., 41, 544-558.
  • Karataş, S., Kılıç, B. and Tellioğlu, M., 2015. “On Fuzzy Soft Connected Topological Spaces”, Journal of Linear and Topological Algebra, 03, 229-240.
  • Maji, P. K., Biswas, R. and Roy, A. R. 2003. “Soft Set Theory”, Comput. Math. Appl. 45, 555-562.
  • Maji, P. K., Roy, A. R. and Biswas, R. 2002. “An Application of Soft Sets In A Decision Making Problem”, Comput. Math. Appl. 44, 1077-1083.
  • Molodtsov, D. 1999. “Soft Set Theory-First Results”, Computers & Mathematics with Applications, 37(4-5), 19-31.
  • Ozkan, A. 2019. “On Near Soft Sets”, Turkish Journal of Mathematics, 43(2), 1005-1017.
  • Pawlak, Z. 1982. “Rough Sets”, Int. J. Comput. Sci. 11, 341–356.
  • Pawlak Z. and Peters, J. F. 2002-2007. “Jack Blisko (How near) Systemy Wspomagania”, 63 Decyzji I, 57, 109, ISBN:83-920730-4-5, 2002-2007.
  • Pei, D. and Miao, 2005. “From Soft Sets to Information Systems, In: Proceedings of Granular Computing (Eds: X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R.R. Yager, B.Zhang)”, Institute of Electrical and Electronics Engineers, 2, 617-621.
  • Peters, J. F. 2007. “Near Sets, Special Theory About Nearness of Objects”, Fund. Inform, 57, 407-433.
  • Peters, J. F. 2007. “Near Sets. General Theory About Nearness of Objects”, Appl. Math.Sci., 2609-2629.
  • Peters J. F. and Wasilewski, P. 2009. “Foundations of Near Sets”, Inform. Sci., 179, 3091-3109.
  • Peters, J. F. 2005. “Rough Ethology: Towards A Biologically-Inspired Study of Collective Behavior in Intelligent Systems with Approximation Spaces”, Transactions On Rough Sets, III, LNCS 3400, 153-174.
  • Peters J. F. and Henry C. 2006. “Reinforcement Learning with Approximation Spaces”, Fund. Inform, 71(2-3), 323-349. Peters, J. F., Ramanna, S. 2009 “Affinities Between Perceptual Granules: Foundations and Perspectives”, In Human-centric information processing Through Granular Modelling sci 182, Eds A, Bargiela and W. Pedrycz, Springer-Verlag, Berlin.
  • Peters, J. F, Henry, C. and Gunderson, D. S. 2007. “Biologically-Inspired Approximate Adaptive Learning Control Strategies: A Rough Set Approach”, International Journal of Hybrid Intelligent Systems, 4(4), 203-216.
  • Peters, J. F. and Naimpally, S. 2012. “Applications of near sets”, Notices Amer. Math. Soc., 59(4), 536-542.
  • Peters, J. F. 2010. “Corrigenda and Addenda: Tolerance Near Sets and Image Correspondence, Int. J. Bio-Inspired Comput., 2(5), 310-318.
  • Riesz, 1908. “Stetigkeitsbegriff und abstrakte mengenlehre”, Proceedings of the International Mathematical Congress of Mathematicians, Series I, Fourth Congress, Rome, 2, 18-24; Kraus Reprint Limited, Nendeln/Liechtenstein, 1967.
  • Tasbozan, H. Icen, I. Bagirmaz N. and Ozcan, A.F. 2017. “Soft Sets and Soft Topology On Nearness Approximation Spaces, Filomat, 31(13), 4117-4125.
  • Zhao, X. D., 1986. “Connectedness On Fuzzy Topological Spaces”, Fuzzy Sets and Systems, 20, 223-240.
  • Wolski, M. 2010. “Perception and Classification. A Note On Near Sets and Rough Sets”, Fund. Inform., 101, 143-155.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Alkan Özkan 0000-0002-8824-9163

Metin Duman 0000-0002-2964-0082

Yayımlanma Tarihi 31 Ağustos 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Özkan, A., & Duman, M. (2020). Near Soft Connected Spaces. Erzincan University Journal of Science and Technology, 13(2), 788-802. https://doi.org/10.18185/erzifbed.728964