Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of mass flow rate and equivalence ratio on laminar premixed methane air flame

Yıl 2021, , 195 - 203, 31.03.2021
https://doi.org/10.18185/erzifbed.776981

Öz

The structures of laminar premixed flames of methane air mixture are investigated for different equivalence ratios and different mass flow rates numerically. Chemkin 19 program and GRI-Mech 3.0 mechanism is used for numerical solution. The axial velocity and mole fractions are investigated for each runs. It found that with the increase of the mass flow rate; the axial velocities of the flame, the axial location of the reaction zones and the mole fraction values of the intermediates increases. The values of the mole fractions of the reactants do not change with mass flow rate.

Kaynakça

  • Cardona, C., Amell, A., and Burbano, H.. 2013. “Laminar Burning Velocity of Natural Gas/Syngas-Air Mıxture”, Dyna, 80(180), 136-143. Retrieved July 31, 2020, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012-73532013000400017&lng=en&tlng=en.
  • Chemkin-Pro 15112, Reaction Design: San Diego, 2011.
  • Date, A.W. (2011). “Analytic Combustion, With Thermodynamics, Chemical Kinetics,And Mass Transfer”, Cambridge University Press.
  • Hirschfelder, J. O., Curtiss, C. F. and Bird, R. B. (1954) “Molecular Theory of Gases and Liquids,” John Wiley and Sons, New York.
  • Hu, M., 2013 “Numerical Modelling of Natural Gas Combustion”, A thesis submitted in fulfilment of the requirements for the degree of Master of Engineering, School of Aerospace, Mechanical and Manufacturing Engineering College of Science, Engineering and Health RMIT University.
  • Hu, S., Gao, J., Zhou, Y., Gong, C., Bai, X.S., Li, Z., Alden, M., 2017. “Numerical and experimental study on laminar methane air premixed falmes at varying pressure”, Energy Procedia 105, 4970 – 4975.
  • Kee, R.J., Grcar, J. F., Smooke, M. D., Miller, J. A. and Meeks, (1998) E. PREMIX: A FORTRAN Program for Modeling Steady Laminar One-Dimensional Premixed Flames, R. Reaction Design 11436 Sorrento Valley Road San Diego, CA 92121. Kuo, K.K. (2005) Principles of Combustion, John Wiley and Sons Inc, Second Ed.
  • Liu, S., Tat, Chan, L., He, Z., Lu, Y., Jiang, X., WeiSoot, F., 2019. Formation And Evolution Characteristics in Premixed Methane/Ethylene-Oxygen-Argon Burner-Stabilized Stagnation Flames, Fuel Volume 242 (15), 871-882.
  • Maleta, T., 2017 “Blowoff Characteristics Of Partially Premixed Flames Of Prevaporized Blends Of Biofuels And Petroleum Fuels”, Master Of Science Thesis, University Of Oklahoma Graduate College.
  • Mendes, M.A.A., Pereira, J.M.C., Pereira, J.C.F. 2008. “A numerical study of the stability of one-dimensional laminar premixed flames in inert porous media”, Combustion and Flame 153, 525–539.
  • Ren, F., Xianga, L., Chu, H., Ya, Y., Han, W, Nie, X., 2020 “Numerical investigation on the effect of CO2 and steam for the H2 intermediate formation and NOX emission in laminar premixed methane/air flames”, International Journal of Hydrogen Energy, 45,3785-3794.
  • Smooke, M. D. ,1982, “Solution of burner-stabilized premixed laminar flames by boundary value methods”, Journal of Computational Physics, 48(1), 72–105. doi:10.1016/0021-9991(82)90036-5 .
  • Tran, L.S., Glaude, P.A., Battin-Leclerc, F.,2013, “An experimental study of the structure of laminar premixed flames of ethanol/methane/oxygen/argon”, Combust Explos Shock Waves, 49(1): 11–18. doi:10.1134/S0010508213010024.
  • Varghese, R.J., Kumar, S., Aravind B, Kolekar, H. 2017. “Effect of CO2 Dilution on Laminar Burning Velocities of Methane-Air Mixture at Elevated Temperatures”, NAPC-2017, Proceedings of the 1st National Aerospace Propulsion Conference, March 15-17, 2017, IIT Kanpur, Kanpur.
  • Wu, Y. 2016 “Experimental investigation of laminar flame speeds of kerosene fuel and second generation biofuels in elevated conditions of pressure and preheat temperature”, Thèse, Docteur de la Normandie Université.

Kütle debisi ve denklik oranlarının önkarışımlı laminer metan-hava karışımı alevi üzerine etkileri

Yıl 2021, , 195 - 203, 31.03.2021
https://doi.org/10.18185/erzifbed.776981

Öz

Metan hava karışımından oluşan laminar ön karışımşlı alev yapısı farklı denklik oranı ve farklı kütle debileri için sayısal olarak incelenmiştir. Sayısal çözümleme için Chemkin 19 programı ve GRI-Mech 3.0 mekanizması kullanılmıştır. Her bir deneme sonucunda alevin eksenel hızı ve mol oranları bulunmuştur. Sonuç olarak, kütle debisi arttıkça, alevin eksenel hızının arttığı, reaksiyon bölgesinin eksenel konumunun arttığı ve ara bileşiklerin mol oranlarının arttığı belirlenmiştir. Ayrıca kütle debisi ile ürünlerin mol oranlarının değişmediği görülmüştür.

Kaynakça

  • Cardona, C., Amell, A., and Burbano, H.. 2013. “Laminar Burning Velocity of Natural Gas/Syngas-Air Mıxture”, Dyna, 80(180), 136-143. Retrieved July 31, 2020, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012-73532013000400017&lng=en&tlng=en.
  • Chemkin-Pro 15112, Reaction Design: San Diego, 2011.
  • Date, A.W. (2011). “Analytic Combustion, With Thermodynamics, Chemical Kinetics,And Mass Transfer”, Cambridge University Press.
  • Hirschfelder, J. O., Curtiss, C. F. and Bird, R. B. (1954) “Molecular Theory of Gases and Liquids,” John Wiley and Sons, New York.
  • Hu, M., 2013 “Numerical Modelling of Natural Gas Combustion”, A thesis submitted in fulfilment of the requirements for the degree of Master of Engineering, School of Aerospace, Mechanical and Manufacturing Engineering College of Science, Engineering and Health RMIT University.
  • Hu, S., Gao, J., Zhou, Y., Gong, C., Bai, X.S., Li, Z., Alden, M., 2017. “Numerical and experimental study on laminar methane air premixed falmes at varying pressure”, Energy Procedia 105, 4970 – 4975.
  • Kee, R.J., Grcar, J. F., Smooke, M. D., Miller, J. A. and Meeks, (1998) E. PREMIX: A FORTRAN Program for Modeling Steady Laminar One-Dimensional Premixed Flames, R. Reaction Design 11436 Sorrento Valley Road San Diego, CA 92121. Kuo, K.K. (2005) Principles of Combustion, John Wiley and Sons Inc, Second Ed.
  • Liu, S., Tat, Chan, L., He, Z., Lu, Y., Jiang, X., WeiSoot, F., 2019. Formation And Evolution Characteristics in Premixed Methane/Ethylene-Oxygen-Argon Burner-Stabilized Stagnation Flames, Fuel Volume 242 (15), 871-882.
  • Maleta, T., 2017 “Blowoff Characteristics Of Partially Premixed Flames Of Prevaporized Blends Of Biofuels And Petroleum Fuels”, Master Of Science Thesis, University Of Oklahoma Graduate College.
  • Mendes, M.A.A., Pereira, J.M.C., Pereira, J.C.F. 2008. “A numerical study of the stability of one-dimensional laminar premixed flames in inert porous media”, Combustion and Flame 153, 525–539.
  • Ren, F., Xianga, L., Chu, H., Ya, Y., Han, W, Nie, X., 2020 “Numerical investigation on the effect of CO2 and steam for the H2 intermediate formation and NOX emission in laminar premixed methane/air flames”, International Journal of Hydrogen Energy, 45,3785-3794.
  • Smooke, M. D. ,1982, “Solution of burner-stabilized premixed laminar flames by boundary value methods”, Journal of Computational Physics, 48(1), 72–105. doi:10.1016/0021-9991(82)90036-5 .
  • Tran, L.S., Glaude, P.A., Battin-Leclerc, F.,2013, “An experimental study of the structure of laminar premixed flames of ethanol/methane/oxygen/argon”, Combust Explos Shock Waves, 49(1): 11–18. doi:10.1134/S0010508213010024.
  • Varghese, R.J., Kumar, S., Aravind B, Kolekar, H. 2017. “Effect of CO2 Dilution on Laminar Burning Velocities of Methane-Air Mixture at Elevated Temperatures”, NAPC-2017, Proceedings of the 1st National Aerospace Propulsion Conference, March 15-17, 2017, IIT Kanpur, Kanpur.
  • Wu, Y. 2016 “Experimental investigation of laminar flame speeds of kerosene fuel and second generation biofuels in elevated conditions of pressure and preheat temperature”, Thèse, Docteur de la Normandie Université.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ulaş Atmaca 0000-0002-9265-1446

Yayımlanma Tarihi 31 Mart 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Atmaca, U. (2021). Effects of mass flow rate and equivalence ratio on laminar premixed methane air flame. Erzincan University Journal of Science and Technology, 14(1), 195-203. https://doi.org/10.18185/erzifbed.776981