Real quaternions have been expressed in terms of 4×4 matrices by means of Hamilton operators. These matrices are applied for rotations in Euclidean 4-space, and are determined also a Hamilton motions in E4. We study these matrices and show that the set of these matrices with the group operation of matrix multiplication is Lie group of 6-dimension.
De Moivre’s formula Homothetic motion Lie group Rotation Real quaternion
Reel kuaterniyonlar Hamilton operatörleri aracılığıyla 4×4 matrisler cinsinden ifade edilmiştir. Bu matrisler Öklid 4-uzayda rotasyonlar için uygulanır ve aynı zamanda E4 bir Hamilton hareketleri tespit edilir. Biz bu matrisleri inceledik ve matris çarpımı grup ile bu matrislerin kümesi 6boyutun Lie grubu olduğunu göstermektedir
Birincil Dil | İngilizce |
---|---|
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 25 Haziran 2015 |
Yayımlandığı Sayı | Yıl 2015 |