Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, , 1299 - 1316, 31.12.2020
https://doi.org/10.18185/erzifbed.828235

Öz

Kaynakça

  • Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys. 108: 664-675.
  • Bagaria P, Saha S, Murru S, Kavala V, Patel BK and Roy RK (2009) A comprehensive decomposition analysis of stabilization energy (CDASE) and its application in locating the rate-determining step of multi-step reactions. Phys. Chem. Chem. Phys.11:8306-8315.
  • Becke AD (1992) Density-functional thermochemistry. II. The effect of the Perdew-Wang generalized-gradient correlation correction. J. Chem. Phys. 97:9173-9177.
  • Becke AD, (1993) Density-functional thermochemistry. III. The role of exact Exchange. J. Chem. Phys. 98(7):5648-5652.
  • Bhattacharjee A, Andreiadis ES (2013) Chavarot-Kerlidou M, Fontecave, M, Field MJ, Artero VA Computational Study of the Mechanism of Hydrogen Evolution by Cobalt (Diimine-Dioxime) Catalysts. Chem. - Eur. J. 19:15166−1517.
  • Bhuyan M, Laskar M, Gupta BD (2008) Biphenyl-Bridged Dicobaloximes: Synthesis, NMR, CV, and X-Ray Study. Organometallics 27:594–601.
  • Bourosh PN, Coropceanu EB, Ciloci AA, Clapco SF, Bologa OA, Bivol CM, Tiurina JP, Bulhac I (2013) New Co(III) Dioximates with Hexafluorophosphate Ion as Stimulators of the Proteolytic Activity of the Micromycete Fusarium gibbosum CNMN FD 12 Russ. J. Coord. Chem. 39(11):777–786.
  • Chen J, Sit PHL (2018) Ab initio study of ligand dissociation/exchange and the hydrogen production process of the Co(dmgH)2(py)Cl cobaloxime in the acetonitrile-water solvent. Catalysis Today 314:179–186.
  • Choudhary VK, Bhatt AK, Dash D, Sharma N (2019) DFT Calculations on Molecular Structures, HOMO–LUMO Study, Reactivity Descriptors and Spectral Analyses of Newly Synthesized Diorganotin(IV) 2-Chloridophenylacetohydroxamate Complexes. J. Comput. Chem. 40:2354–2363.
  • Coropceanua EB, Rijaa AP, Lozana VI, Bologaa OA, Boldisora AA, Bulhaca II, Ch. Kravtsovb V, Bouroshb PN (2012) Synthesis and Crystal Structure of Co(III) Dioximates with the Complex Anion [SbF6]–. Russ. J. Coord. Chem. 38(8): 545–551.
  • Coropceanua EB, Bulhaca I, Shtefyrtseb AA, Botnar’b VF, Melenchukb M, Kuligina E, Bouroshc PN (2017); Synthesis, Crystal Structure, and Biological Properties of the Complex [Co(DmgH)2(Seu)1.4(Se-Seu)0.5(Se2)0.1][BF4]. Russ. J. Coord. Chem. 43(3):164–171.
  • Dennington R, Keith T, Millam J, GaussView, Version 5, Semichem Inc., Shawnee Mission KS, 2009.
  • Ekennia AC, Onwudiwe DC, Olasunkanmi LO, Osowole AA, Ebenso EE (2015) Synthesis, DFT Calculation, and Antimicrobial Studies of Novel Zn(II), Co(II), Cu(II), and Mn(II) Heteroleptic Complexes Containing Benzoylacetone and Dithiocarbamate Hindawi Publishing Corporation Bioinorg. Chem. Appl.Article ID 789063, 12 pages.
  • El‐Gammal OA, Abu El‐Reash GM, Bedier RA (2019) Synthesis, spectroscopic, DFT, biological studies and molecular docking of oxovanadium (IV), copper (II) and iron (III) complexes of a new hydrazone derived from heterocyclic hydrazide. Appl. Organometal Chem. 33:e5141.
  • Frau J, Muñoz F, Glossman-Mitnik D (2017) A Conceptual DFT Study of The Chemical Reactivity of Magnesium Octaethylporphyrin (Mgoep) as Predicted by The Minnesota Family of Density Functionals. Quim DGM. Nova 40(4):402-406.
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Frisch H, Trucks MJ, Schlegel GW, Scuseria HB, Robb GE, Cheeseman MA, Scalmani JR, Barone G, et al., (2017) Gaussian 09. Revision E01 edn. Gaussian Inc,,Wallingford, CT.
  • Gao Y, Lin H, Zhang S, Li Z (2016) Co(dmgH)2pyCl as a noble-metal-free co-catalyst for highly efficient photocatalytic hydrogen evolution over hexagonal ZnIn2S4. RSC Adv. 6:6072–6076.
  • Geerlings P, Proft FD, Langenaeker W (2003) Conceptual density functional theory, Chem. Rev. 103:1793–1874.
  • Gupta BD, Yamuna R, Mandal D (2006) Cobaloximes with Mixed Dioximes of Glyoxime and Diphenylglyoxime: Synthesis, Characterization, CV, X-ray Studies, and Crystal Packing. Organometallics 25:706-714.
  • Hamid A, Roy RK (2019) Solvent effect on stabilization energy: An approach based on density functional reactivity theory. Int J Quantum Chem. 119:e25909.
  • Hamid A, Roy RK (2020) Correlation between Equilibrium Constant and Stabilization Energy: A Combined Approach Based on Chemical Thermodynamics, Statistical Thermodynamics, and Density Functional Reactivity Theory. J. Phys. Chem. A 124:1279-1288.
  • Hepokur C, Günsel A, Yarasir MN, Bilgiçli AT, Tüzün B, Tüzün G, Yaylim İ (2017) Novel type ketone-substituted metallophthalocyanines: synthesis, spectral, structural, computational and anticancer studies. RSC Adv. 7:56296–56305.
  • Ibrahim KM, Zaky RR, Abou-El-Nadar HM, Abo-Zeid SM (2014) Structural, spectral, DFT and biological studies of (E)-3-(2-(2-hydroxybenzylidene)hydrazinyl)- 3-oxo-N-(p-tolyl)propanamide complexes. J. Mol. Struct. 1075:71–84.
  • Jiang YK, Liu JH (2012) DFT Studies of Cobalt Hydride Intermediate on Cobaloxime-Catalyzed H2 Evolution Pathways. Int. J. Quantum Chem. 112:2541−2546.
  • Khan SA, Rizwan K, Shahid S, Noamaan MA, Rasheed T, Amjad H (2020) Synthesis, DFT, computational exploration of chemical reactivity, molecular docking studies of novel formazan metal complexes and their biological applications. Appl Organometal Chem. e5444:1-24.
  • Krishnan R, Frisch MJ, Pople JAJ (1980) Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory. Chem. Phys. 72(7):4244-4245.
  • Kumar K, Kumar S, Gupta BD (2010) Weak interactions between furfuryl and equatorial dioxime ligand in furfuryl(O2)Co(dmgH)2Py: NMR, X-ray and DFT calculations. J Organomet Chem. 695:512–517.
  • Kumar K, Gupta BD (2010) Synthesis, characterization, CV, and X-ray structures of aryl cobaloximes. J Organomet Chem. 695:2233-2239.
  • Kurnaz P, Yuksektepe Ataol C, Bati H, Buyukgungor O (2016) XRD, FTIR, 1H NMR, 13C NMR and UV spectroscopic and computational studies of [3-(hydroxyimino)butan-2-ylidene]furan-2′-carbohydrazide Mol. Cryst. Liq. Cryst. 634:61-72.
  • Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 37:785-789.
  • Lopez C, Alvarez S, Aguiló M, Solans X, Font-Altaba M (1987) Synthesis and Structure of Chloro(ligand)bis( diphenylglyoximato)cobalt( III) Complexes. Inorg. Chim. Acta, 127 (1987) 153-159.
  • Lopez C, Alvarez S, Font-Bardía M, Solans X (1991) New organometallic cobaloximes containing an equatorial diphenylglyoximato(-1) ligand. Comparison between their properties and those of other B12 model compounds. Crystal structure of trans-[Co( dpgH) 2( CH,)(pyridine)]. J. Organomet. Chem. 414:245-259.
  • Lynch BJ, Fast PL, Harris M, Truhlar DG, (2000) Adiabatic Connection for Kinetics, J. Chem. Phys. A 104 4811-4815.
  • Mandal D, Gupta BD (2006) Cobaloximes with Pyrazine and Their Dimetallic Complexes. Eur. J. Inorg. Chem. 4086–4095.
  • McCormick TM, Han Z, Weinberg DJ, Brennessel WW, Holland PL, Eisenberg R (2011) Impact of Ligand Exchange in Hydrogen Production from Cobaloxime-Containing Photocatalytic Systems. Inorg. Chem. 50:10660–10666.
  • Meera P, Revathi C, Dayalan A (2009) Chloridobis[diphenylglyoximato(1–)- k2N,N3](1H-imidazole-jN3)cobalt(III) hemihydrate. Acta Cryst. E65:m140–m141.
  • Meera P, Selvi MA, Dayalan A (2011) Aquachloridobis(diphenylglyoximatok2N,N’)cobalt(III) dihydrate Acta Cryst. E67:m626–m627.
  • Muckerman JT, Fujita E (2011) Theoretical Studies of the Mechanism of Catalytic Hydrogen Production by a Cobaloxime. Chem. Commun. 47:12456−12458.
  • Natali M (2017) Elucidating the Key Role of pH on Light-Driven Hydrogen Evolution by a Molecular Cobalt Catalyst. ACS Catal. 7:1330–1339.
  • Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105:7512–7516.
  • Parr R, Yang W (1989) Density–Functional Theory of Atoms and Molecules, Oxford Univ. Press, New York.
  • Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity IndexJ. Am. Chem. Soc. 121:1922−1924.
  • Parthasarathi R, Padmanabhan J, Subramanian V, Maiti B, Chattaraj PK (2003) Chemical Reactivity Profiles of Two Selected Polychlorinated Biphenyls. J. Phys. Chem. A 107:10346-10352 .
  • Saha S, Roy RK, Pal S (2010) CDASE—A reliable scheme to explain the reactivity sequence between Diels–Alder pairs. Phys. Chem. Chem. Phys. 12:9328-9338.
  • Sandoval-Yañez C, Martínez-Araya JI (2019) Assessment of a Set of Twelve Density Functionals to estimate the Global Reactivity of Myricetin through the Koopmans’ Theorem. Chem. Phys. Lett. 715:354-359.
  • Sarmah A, Kinkar R (2013) Understanding the preferential binding interaction of aqua-cisplatins with nucleobase guanine over adenine: a density functional reactivity theory based approach Roy RSC Adv. 3:2822–2830.
  • Sarmah A, Roy RK (2014) A density functional reactivity theory (DFRT) based approach to understand the interaction of cisplatin analogues with protecting agents. J Comput Aided Mol Des, 28:1153-1173.
  • Shukla SN, Gaur P, Raidas ML, Chaurasia B (2020) Tailored synthesis of unsymmetrical tetradentate ONNO schiff base complexes of Fe(IIl), Co(II) and Ni(II): Spectroscopic characterization, DFT optimization, oxygen-binding study, antibacterial and anticorrosion activity. J. Mol. Struct. 1202:127362.
  • Skripnikov LV, Chemissian Visualization Computer Program v4.43, www.chemissian.com, 2016.
  • Solis BH, Hammes-Schiffer S (2011) Theoretical Analysis of Mechanistic Pathways for Hydrogen Evolution Catalyzed by Cobaloximes. Inorg. Chem. 50:11252−11262.
  • Solis B.H., Yu Y, Hammes-Schiffer S (2013) Effects of Ligand Modification and Protonation on Metal Oxime Hydrogen Evolution Electrocatalysts. Inorg. Chem. 52:6994−6999.
  • T.H. Dunning Jr., P.J. Hay H.F. Schaefer III (Ed.), Modern Theoretical Chemistry, vol. 3, Plenum, New York (1976), p. 1.
  • Xu Y, Chen R, Li Z, Li AL, Han H, Li (2017) Influence of the Electrostatic Interaction between a Molecular Catalyst and Semiconductor on Photocatalytic Hydrogen Evolution Activity in Cobaloxime/CdS Hybrid Systems. A.C.S. Appl, Mater. Inter. 9:23230–23237.
  • Yang Y, Gao H (2012) Comparison of DFT methods for molecular structure and vibration spectra of ofloxacin calculations. Spectrochim. Acta A 85:303– 309.
  • Yang W, Parr RG (1985) Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc. Natl. Acad. Sci. USA 82:6723–6726.
  • Ye Y, Xu Y, Huang L, Fan D, Feng Z, Wang X, Li C (2016) Roles of adsorption sites in electron transfer from CdS quantum dots to molecular catalyst cobaloxime studied by time-resolved spectroscopy. Phys. Chem. Chem. Phys. 18:17389–17397.
  • Zhao Y, Tishchenko O, Truhlar DG (2005) How Well Can Density Functional Methods Describe Hydrogen Bonds to π Acceptors? J. Phys. Org. Chem. B 109:19046-19051.

DFT Computational Studies on Some Cobaloximes

Yıl 2020, , 1299 - 1316, 31.12.2020
https://doi.org/10.18185/erzifbed.828235

Öz

This study carried out quantum chemical investigations on cobaloxime complexes: [Co(dpgH)2Cl(H2O)] (C1), [Co(dpgH)2(Pz)Cl] (C2), [Co(dpgH)2(Im)Cl] (C3), [Co(dpgH)2(py)Cl] (C4) and [Co(dpgH)2 (CH3)(py)Cl] (C5), where dpgH− is diphenyl glyoximate, Pz is pyrazine, Im is imidazole and py is pyridine. The stable molecular geometries of these complexes were achieved using density functional theory (DFT) methods. The values of the geometrical parameters obtained from optimized cobaloxime complexes were compatible with experimental data. In order to predict the chemical reactivity of the complexes, their frontier molecular orbital (FMO) energies and their reactivity parameters based on DFT were calculated for optimized cobaloxime complexes. The interaction of the cobaloximes with different DNA bases and Watson–Crick base pairs (A–T and G–C) were explored on the basis of the different reactivity parameters of density functional reactivity theory (DFRT). The results revealed that cobaloximes studied generally acted as an electron-acceptor agent in their interaction with biomolecules. The order of interaction of cobaloximes with all biomolecules followed the sequence C1 > C2 > C3 > C4 > C5.

Kaynakça

  • Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys. 108: 664-675.
  • Bagaria P, Saha S, Murru S, Kavala V, Patel BK and Roy RK (2009) A comprehensive decomposition analysis of stabilization energy (CDASE) and its application in locating the rate-determining step of multi-step reactions. Phys. Chem. Chem. Phys.11:8306-8315.
  • Becke AD (1992) Density-functional thermochemistry. II. The effect of the Perdew-Wang generalized-gradient correlation correction. J. Chem. Phys. 97:9173-9177.
  • Becke AD, (1993) Density-functional thermochemistry. III. The role of exact Exchange. J. Chem. Phys. 98(7):5648-5652.
  • Bhattacharjee A, Andreiadis ES (2013) Chavarot-Kerlidou M, Fontecave, M, Field MJ, Artero VA Computational Study of the Mechanism of Hydrogen Evolution by Cobalt (Diimine-Dioxime) Catalysts. Chem. - Eur. J. 19:15166−1517.
  • Bhuyan M, Laskar M, Gupta BD (2008) Biphenyl-Bridged Dicobaloximes: Synthesis, NMR, CV, and X-Ray Study. Organometallics 27:594–601.
  • Bourosh PN, Coropceanu EB, Ciloci AA, Clapco SF, Bologa OA, Bivol CM, Tiurina JP, Bulhac I (2013) New Co(III) Dioximates with Hexafluorophosphate Ion as Stimulators of the Proteolytic Activity of the Micromycete Fusarium gibbosum CNMN FD 12 Russ. J. Coord. Chem. 39(11):777–786.
  • Chen J, Sit PHL (2018) Ab initio study of ligand dissociation/exchange and the hydrogen production process of the Co(dmgH)2(py)Cl cobaloxime in the acetonitrile-water solvent. Catalysis Today 314:179–186.
  • Choudhary VK, Bhatt AK, Dash D, Sharma N (2019) DFT Calculations on Molecular Structures, HOMO–LUMO Study, Reactivity Descriptors and Spectral Analyses of Newly Synthesized Diorganotin(IV) 2-Chloridophenylacetohydroxamate Complexes. J. Comput. Chem. 40:2354–2363.
  • Coropceanua EB, Rijaa AP, Lozana VI, Bologaa OA, Boldisora AA, Bulhaca II, Ch. Kravtsovb V, Bouroshb PN (2012) Synthesis and Crystal Structure of Co(III) Dioximates with the Complex Anion [SbF6]–. Russ. J. Coord. Chem. 38(8): 545–551.
  • Coropceanua EB, Bulhaca I, Shtefyrtseb AA, Botnar’b VF, Melenchukb M, Kuligina E, Bouroshc PN (2017); Synthesis, Crystal Structure, and Biological Properties of the Complex [Co(DmgH)2(Seu)1.4(Se-Seu)0.5(Se2)0.1][BF4]. Russ. J. Coord. Chem. 43(3):164–171.
  • Dennington R, Keith T, Millam J, GaussView, Version 5, Semichem Inc., Shawnee Mission KS, 2009.
  • Ekennia AC, Onwudiwe DC, Olasunkanmi LO, Osowole AA, Ebenso EE (2015) Synthesis, DFT Calculation, and Antimicrobial Studies of Novel Zn(II), Co(II), Cu(II), and Mn(II) Heteroleptic Complexes Containing Benzoylacetone and Dithiocarbamate Hindawi Publishing Corporation Bioinorg. Chem. Appl.Article ID 789063, 12 pages.
  • El‐Gammal OA, Abu El‐Reash GM, Bedier RA (2019) Synthesis, spectroscopic, DFT, biological studies and molecular docking of oxovanadium (IV), copper (II) and iron (III) complexes of a new hydrazone derived from heterocyclic hydrazide. Appl. Organometal Chem. 33:e5141.
  • Frau J, Muñoz F, Glossman-Mitnik D (2017) A Conceptual DFT Study of The Chemical Reactivity of Magnesium Octaethylporphyrin (Mgoep) as Predicted by The Minnesota Family of Density Functionals. Quim DGM. Nova 40(4):402-406.
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Frisch H, Trucks MJ, Schlegel GW, Scuseria HB, Robb GE, Cheeseman MA, Scalmani JR, Barone G, et al., (2017) Gaussian 09. Revision E01 edn. Gaussian Inc,,Wallingford, CT.
  • Gao Y, Lin H, Zhang S, Li Z (2016) Co(dmgH)2pyCl as a noble-metal-free co-catalyst for highly efficient photocatalytic hydrogen evolution over hexagonal ZnIn2S4. RSC Adv. 6:6072–6076.
  • Geerlings P, Proft FD, Langenaeker W (2003) Conceptual density functional theory, Chem. Rev. 103:1793–1874.
  • Gupta BD, Yamuna R, Mandal D (2006) Cobaloximes with Mixed Dioximes of Glyoxime and Diphenylglyoxime: Synthesis, Characterization, CV, X-ray Studies, and Crystal Packing. Organometallics 25:706-714.
  • Hamid A, Roy RK (2019) Solvent effect on stabilization energy: An approach based on density functional reactivity theory. Int J Quantum Chem. 119:e25909.
  • Hamid A, Roy RK (2020) Correlation between Equilibrium Constant and Stabilization Energy: A Combined Approach Based on Chemical Thermodynamics, Statistical Thermodynamics, and Density Functional Reactivity Theory. J. Phys. Chem. A 124:1279-1288.
  • Hepokur C, Günsel A, Yarasir MN, Bilgiçli AT, Tüzün B, Tüzün G, Yaylim İ (2017) Novel type ketone-substituted metallophthalocyanines: synthesis, spectral, structural, computational and anticancer studies. RSC Adv. 7:56296–56305.
  • Ibrahim KM, Zaky RR, Abou-El-Nadar HM, Abo-Zeid SM (2014) Structural, spectral, DFT and biological studies of (E)-3-(2-(2-hydroxybenzylidene)hydrazinyl)- 3-oxo-N-(p-tolyl)propanamide complexes. J. Mol. Struct. 1075:71–84.
  • Jiang YK, Liu JH (2012) DFT Studies of Cobalt Hydride Intermediate on Cobaloxime-Catalyzed H2 Evolution Pathways. Int. J. Quantum Chem. 112:2541−2546.
  • Khan SA, Rizwan K, Shahid S, Noamaan MA, Rasheed T, Amjad H (2020) Synthesis, DFT, computational exploration of chemical reactivity, molecular docking studies of novel formazan metal complexes and their biological applications. Appl Organometal Chem. e5444:1-24.
  • Krishnan R, Frisch MJ, Pople JAJ (1980) Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory. Chem. Phys. 72(7):4244-4245.
  • Kumar K, Kumar S, Gupta BD (2010) Weak interactions between furfuryl and equatorial dioxime ligand in furfuryl(O2)Co(dmgH)2Py: NMR, X-ray and DFT calculations. J Organomet Chem. 695:512–517.
  • Kumar K, Gupta BD (2010) Synthesis, characterization, CV, and X-ray structures of aryl cobaloximes. J Organomet Chem. 695:2233-2239.
  • Kurnaz P, Yuksektepe Ataol C, Bati H, Buyukgungor O (2016) XRD, FTIR, 1H NMR, 13C NMR and UV spectroscopic and computational studies of [3-(hydroxyimino)butan-2-ylidene]furan-2′-carbohydrazide Mol. Cryst. Liq. Cryst. 634:61-72.
  • Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 37:785-789.
  • Lopez C, Alvarez S, Aguiló M, Solans X, Font-Altaba M (1987) Synthesis and Structure of Chloro(ligand)bis( diphenylglyoximato)cobalt( III) Complexes. Inorg. Chim. Acta, 127 (1987) 153-159.
  • Lopez C, Alvarez S, Font-Bardía M, Solans X (1991) New organometallic cobaloximes containing an equatorial diphenylglyoximato(-1) ligand. Comparison between their properties and those of other B12 model compounds. Crystal structure of trans-[Co( dpgH) 2( CH,)(pyridine)]. J. Organomet. Chem. 414:245-259.
  • Lynch BJ, Fast PL, Harris M, Truhlar DG, (2000) Adiabatic Connection for Kinetics, J. Chem. Phys. A 104 4811-4815.
  • Mandal D, Gupta BD (2006) Cobaloximes with Pyrazine and Their Dimetallic Complexes. Eur. J. Inorg. Chem. 4086–4095.
  • McCormick TM, Han Z, Weinberg DJ, Brennessel WW, Holland PL, Eisenberg R (2011) Impact of Ligand Exchange in Hydrogen Production from Cobaloxime-Containing Photocatalytic Systems. Inorg. Chem. 50:10660–10666.
  • Meera P, Revathi C, Dayalan A (2009) Chloridobis[diphenylglyoximato(1–)- k2N,N3](1H-imidazole-jN3)cobalt(III) hemihydrate. Acta Cryst. E65:m140–m141.
  • Meera P, Selvi MA, Dayalan A (2011) Aquachloridobis(diphenylglyoximatok2N,N’)cobalt(III) dihydrate Acta Cryst. E67:m626–m627.
  • Muckerman JT, Fujita E (2011) Theoretical Studies of the Mechanism of Catalytic Hydrogen Production by a Cobaloxime. Chem. Commun. 47:12456−12458.
  • Natali M (2017) Elucidating the Key Role of pH on Light-Driven Hydrogen Evolution by a Molecular Cobalt Catalyst. ACS Catal. 7:1330–1339.
  • Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105:7512–7516.
  • Parr R, Yang W (1989) Density–Functional Theory of Atoms and Molecules, Oxford Univ. Press, New York.
  • Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity IndexJ. Am. Chem. Soc. 121:1922−1924.
  • Parthasarathi R, Padmanabhan J, Subramanian V, Maiti B, Chattaraj PK (2003) Chemical Reactivity Profiles of Two Selected Polychlorinated Biphenyls. J. Phys. Chem. A 107:10346-10352 .
  • Saha S, Roy RK, Pal S (2010) CDASE—A reliable scheme to explain the reactivity sequence between Diels–Alder pairs. Phys. Chem. Chem. Phys. 12:9328-9338.
  • Sandoval-Yañez C, Martínez-Araya JI (2019) Assessment of a Set of Twelve Density Functionals to estimate the Global Reactivity of Myricetin through the Koopmans’ Theorem. Chem. Phys. Lett. 715:354-359.
  • Sarmah A, Kinkar R (2013) Understanding the preferential binding interaction of aqua-cisplatins with nucleobase guanine over adenine: a density functional reactivity theory based approach Roy RSC Adv. 3:2822–2830.
  • Sarmah A, Roy RK (2014) A density functional reactivity theory (DFRT) based approach to understand the interaction of cisplatin analogues with protecting agents. J Comput Aided Mol Des, 28:1153-1173.
  • Shukla SN, Gaur P, Raidas ML, Chaurasia B (2020) Tailored synthesis of unsymmetrical tetradentate ONNO schiff base complexes of Fe(IIl), Co(II) and Ni(II): Spectroscopic characterization, DFT optimization, oxygen-binding study, antibacterial and anticorrosion activity. J. Mol. Struct. 1202:127362.
  • Skripnikov LV, Chemissian Visualization Computer Program v4.43, www.chemissian.com, 2016.
  • Solis BH, Hammes-Schiffer S (2011) Theoretical Analysis of Mechanistic Pathways for Hydrogen Evolution Catalyzed by Cobaloximes. Inorg. Chem. 50:11252−11262.
  • Solis B.H., Yu Y, Hammes-Schiffer S (2013) Effects of Ligand Modification and Protonation on Metal Oxime Hydrogen Evolution Electrocatalysts. Inorg. Chem. 52:6994−6999.
  • T.H. Dunning Jr., P.J. Hay H.F. Schaefer III (Ed.), Modern Theoretical Chemistry, vol. 3, Plenum, New York (1976), p. 1.
  • Xu Y, Chen R, Li Z, Li AL, Han H, Li (2017) Influence of the Electrostatic Interaction between a Molecular Catalyst and Semiconductor on Photocatalytic Hydrogen Evolution Activity in Cobaloxime/CdS Hybrid Systems. A.C.S. Appl, Mater. Inter. 9:23230–23237.
  • Yang Y, Gao H (2012) Comparison of DFT methods for molecular structure and vibration spectra of ofloxacin calculations. Spectrochim. Acta A 85:303– 309.
  • Yang W, Parr RG (1985) Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc. Natl. Acad. Sci. USA 82:6723–6726.
  • Ye Y, Xu Y, Huang L, Fan D, Feng Z, Wang X, Li C (2016) Roles of adsorption sites in electron transfer from CdS quantum dots to molecular catalyst cobaloxime studied by time-resolved spectroscopy. Phys. Chem. Chem. Phys. 18:17389–17397.
  • Zhao Y, Tishchenko O, Truhlar DG (2005) How Well Can Density Functional Methods Describe Hydrogen Bonds to π Acceptors? J. Phys. Org. Chem. B 109:19046-19051.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ayşin Zülfikaroğlu 0000-0002-2871-844X

Yayımlanma Tarihi 31 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Zülfikaroğlu, A. (2020). DFT Computational Studies on Some Cobaloximes. Erzincan University Journal of Science and Technology, 13(3), 1299-1316. https://doi.org/10.18185/erzifbed.828235