Araştırma Makalesi
BibTex RIS Kaynak Göster

A Study to Define Critical Current Limit for Covetic Al Formation

Yıl 2020, , 1348 - 1353, 31.12.2020
https://doi.org/10.18185/erzifbed.837956

Öz

This paper presents the production steps of Al covetic material, as well as a margin for the critical current in its production process along with stress-strain mechanical measurement results. As the need for energy is increasing every day, it is getting important not only its production but also its transmission in power grids. Covetic metals, one alternate to superconductors, show high electrical conductivity property for that purpose. During covetic production, a metal matrix is first melted and then mixed with Carbon Nanotubes (CNTs) before a high DC current is applied to the molten material. The role of this DC current is important in covetic material production and still under investigation. In the course of study, covetic samples have been produced for four different current values, namely 100A, 200A, 300A and 400A, applied for 10 minutes, and one sample without a DC current, all having CNT-Al mixing ratio of 1% by weight. Another sample was also produced without CNT doping for comparison purposes. Obtained results have showed that covetic material formation takes place for DC current values greater than or equal to 200A based on conductivity comparison of the samples. It is also observed that covetic materials show increased flexibility.

Destekleyen Kurum

Tubitak

Proje Numarası

117E114

Kaynakça

  • Alvarenga, J. 2010 “Carbon nanotube materials for aerospace wiring”, Master Thesis, Department of Materials Science & Engineering College of Science Rochester Institute of Technology.
  • Bakir, M., Jasiuk, I. 2017. “Novel metal-carbon nanomaterials: A review on covetics”, Adv Mater Lett, 8(9), 884–890.
  • Bakshi, S. R., Lahiri, D., Agarwal, A. 2010. “Carbon nanotube reinforced metal matrix composites – a review”, International Materials Reviews, 55 (1), 41.
  • Behabtu, N., Young, C. C., Tsentalovich, D. E., Kleinerman, O., Wang, X., Ma, A. W. K.., Bengio, E. A., Waarbeek, R. F., Jong, J. J., Hoogerwerf, R. E., Fairchild, S. B., Ferguson, J. B., Maruyama, B., Kono, J., Talmon, Y., Cohen, Y., Otto, M. J., Pasquali, M. 2013. “Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity”, Science, 339, 182-185.
  • Forrest, D. R., Jasiuk, I., Brown, L., Joyce, P., Mansour, A., Salamanca-Riba, L. 2012. “Novel metal-matrix composites with integrally-bound nanoscale carbon” Technical Proceedings of the 2012 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech , 560-563.
  • Ga, P. K. H., Xavior, M. A., 2014. “Graphene Reinforced Metal Matrix Composite (GRMMC): A Review”, Procedia Engineering 97, 1033 – 1040.
  • Knych, T., Kiesiewicz, G., Kwaśniewski, P., Mamala, A., Kawecki, A., Smyrak, B. 2014. “Fabrication And Cold Drawing Of Copper Covetic Nanostructured Carbon Composites”, Archives of Metallurgy and Materials, 59 (4), 1283-1286.
  • Los Alamos National Laboratory, 2011. “Ultraconductus: Innovative Electrical Conductors”.
  • Salamanca‐Riba, L.G., Isaacs, R.A., LeMieux, M.C., Wan, J., Gaskell, K., Jiang, Y., Wuttig, M., Mansour, A.N., Rashkeev, S.N., Kuklja, M.M., Zavalij, P.Y., Santiago, J.R. and Hu, L. 2015. “Synthetic Crystals of Silver with Carbon: 3D Epitaxy of Carbon Nanostructures in the Silver Lattice”, Adv. Funct. Mater., 25, 4768-4777.
  • Smalley, R.E. 2005. “Future Global Energy Prosperity: The Terawatt Challenge”, MRS Bulletin, 30 (6), 412.
  • Varnell, J.A., Bakir, M., Diascro, A.M., Chen, X., Nilufar, S., Jasiuk, I. 2019. “Understanding the influence of carbon addition on the corrosion behavior and mechanical properties of Al alloy covetics”, J. Mater Sci., 54(3), 2668–2679.
  • Yang, M., Liu, Y., Fan, T., Zhang, D., 2020. "Metal-graphene interfaces in epitaxial and bulk systems: A review", Progress in Materials Science, 110 (100652).
Yıl 2020, , 1348 - 1353, 31.12.2020
https://doi.org/10.18185/erzifbed.837956

Öz

Proje Numarası

117E114

Kaynakça

  • Alvarenga, J. 2010 “Carbon nanotube materials for aerospace wiring”, Master Thesis, Department of Materials Science & Engineering College of Science Rochester Institute of Technology.
  • Bakir, M., Jasiuk, I. 2017. “Novel metal-carbon nanomaterials: A review on covetics”, Adv Mater Lett, 8(9), 884–890.
  • Bakshi, S. R., Lahiri, D., Agarwal, A. 2010. “Carbon nanotube reinforced metal matrix composites – a review”, International Materials Reviews, 55 (1), 41.
  • Behabtu, N., Young, C. C., Tsentalovich, D. E., Kleinerman, O., Wang, X., Ma, A. W. K.., Bengio, E. A., Waarbeek, R. F., Jong, J. J., Hoogerwerf, R. E., Fairchild, S. B., Ferguson, J. B., Maruyama, B., Kono, J., Talmon, Y., Cohen, Y., Otto, M. J., Pasquali, M. 2013. “Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity”, Science, 339, 182-185.
  • Forrest, D. R., Jasiuk, I., Brown, L., Joyce, P., Mansour, A., Salamanca-Riba, L. 2012. “Novel metal-matrix composites with integrally-bound nanoscale carbon” Technical Proceedings of the 2012 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech , 560-563.
  • Ga, P. K. H., Xavior, M. A., 2014. “Graphene Reinforced Metal Matrix Composite (GRMMC): A Review”, Procedia Engineering 97, 1033 – 1040.
  • Knych, T., Kiesiewicz, G., Kwaśniewski, P., Mamala, A., Kawecki, A., Smyrak, B. 2014. “Fabrication And Cold Drawing Of Copper Covetic Nanostructured Carbon Composites”, Archives of Metallurgy and Materials, 59 (4), 1283-1286.
  • Los Alamos National Laboratory, 2011. “Ultraconductus: Innovative Electrical Conductors”.
  • Salamanca‐Riba, L.G., Isaacs, R.A., LeMieux, M.C., Wan, J., Gaskell, K., Jiang, Y., Wuttig, M., Mansour, A.N., Rashkeev, S.N., Kuklja, M.M., Zavalij, P.Y., Santiago, J.R. and Hu, L. 2015. “Synthetic Crystals of Silver with Carbon: 3D Epitaxy of Carbon Nanostructures in the Silver Lattice”, Adv. Funct. Mater., 25, 4768-4777.
  • Smalley, R.E. 2005. “Future Global Energy Prosperity: The Terawatt Challenge”, MRS Bulletin, 30 (6), 412.
  • Varnell, J.A., Bakir, M., Diascro, A.M., Chen, X., Nilufar, S., Jasiuk, I. 2019. “Understanding the influence of carbon addition on the corrosion behavior and mechanical properties of Al alloy covetics”, J. Mater Sci., 54(3), 2668–2679.
  • Yang, M., Liu, Y., Fan, T., Zhang, D., 2020. "Metal-graphene interfaces in epitaxial and bulk systems: A review", Progress in Materials Science, 110 (100652).
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Emin Argun Oral 0000-0002-8120-9679

Proje Numarası 117E114
Yayımlanma Tarihi 31 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Oral, E. A. (2020). A Study to Define Critical Current Limit for Covetic Al Formation. Erzincan University Journal of Science and Technology, 13(3), 1348-1353. https://doi.org/10.18185/erzifbed.837956