Araştırma Makalesi
BibTex RIS Kaynak Göster

Structural Characterization Multi Walled Carbon Nanotube Films on Cu

Yıl 2021, , 434 - 441, 31.08.2021
https://doi.org/10.18185/erzifbed.916241

Öz

Bakır/bakır oksit/karbon nanotüp (Cu/CuO/CNT) kompozit ince filmler, elektroforetik biriktirme (EPD) yöntemine benzer şekilde hazırlanmıştır. Nanotüp filmler, SEM, EDAX, XPS, FTIR, Raman ile karakterize edilmiş ve filmlerin mikro yapısının, işlemde kullanılan çözücü, büyüme gerilimi ve tavlanmış sıcaklık bileşimi tarafından büyük ölçüde etkilendiği bulunmuştur. Kompozit yapılarda farklı tuzlu deiyonize su (KNO3, KCl, FeCl2) kullanılmakta ancak istenilen sonuç alınamamıştır. Bakır yüzeyinde daha kısa sürede daha fazla CNT birikmesi nedeniyle asetonla en iyi sonuçlar elde edilmiştir. Aseton/CNT solüsyonunda üretilen yapılarda oksit miktarının daha az olduğu görülmektedir.

Kaynakça

  • [1]. Lassègue, P., Noé, L., Monthioux, M., & Caussat, B. (2017). Fluidized bed chemical vapor deposition of copper nanoparticles on multi-walled carbon nanotubes. Surface and Coatings Technology, 331, 129-136.
  • [2]. Kumar, S. S., Vairam, S., Neelakandeswari, N., & Aruna, S. (2018). New heterojunction solar cells using copper oxide ingrained MWCNT: Fabrication and performance analysis. Solar Energy, 166, 195-202.
  • [3]. Akbaba, U., Kasapoğlu, A. E., & Gür, E. (2018). Gamma and neutron irradiation effects on multi-walled carbon nanotubes. Diamond and Related Materials, 87, 242-247.
  • [4]. Faneca, G., Segura, I., Torrents, J. M., & Aguado, A. (2018). Development of conductive cementitious materials using recycled carbon fibres. Cement and Concrete Composites.
  • [5]. Staudinger, U., Thoma, P., Lüttich, F., Janke, A., Kobsch, O., Gordan, O. D., ... & Zahn, D. R. T. (2017). Properties of thin layers of electrically conductive polymer/MWCNT composites prepared by spray coating. Composites Science and Technology, 138, 134-143.
  • [6]. Shao, S., Zhou, S., Li, L., Li, J., Luo, C., Wang, J., ... & Weng, J. (2011). Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers. Biomaterials, 32(11), 2821-2833.
  • [7]. Chen, Y. F., Tan, Y. J., Li, J., Hao, Y. B., Shi, Y. D., & Wang, M. (2018). Graphene oxide-assisted dispersion of multi-walled carbon nanotubes in biodegradable Poly (ε-caprolactone) for mechanical and electrically conductive enhancement. Polymer Testing, 65, 387-397.
  • [8]. Dhall, S., & Jaggi, N. (2016). Effect of oxide nanoparticles on structural properties of multiwalled carbon nanotubes. Journal of Molecular Structure, 1107, 300-304.
  • [9]. Rezaee, S., Ghaderi, A., Boochani, A., & Solaymani, S. (2017). Synthesis of multiwalled carbon nanotubes on Cu-Fe nano-catalyst substrate. Results in physics, 7, 3640-3644.
  • [10]. Mandal, P., & Mondal, S. C. (2018). Investigation of Electro-Thermal property for Cu-MWCNT composite coating on anodized 6061 aluminium alloy. Applied Surface Science, 454, 138-147.
  • [11]. Huang, W., Li, J., Zhao, S., Han, F., Zhang, G., Sun, R., & Wong, C. P. (2017). Highly electrically conductive and stretchable copper nanowires-based composite for flexible and printable electronics. Composites Science and Technology, 146, 169-176.
  • [12]. Prakash, K. S., Thankachan, T., & Radhakrishnan, R. (2017). Parametric optimization of dry sliding wear loss of copper–MWCNT composites. Transactions of Nonferrous Metals Society of China, 27(3), 627-637.
  • [13]. Singh, R., Gaur, M. S., & Tiwari, R. K. (2015). Development of polyurethane multiwall carbon nanotubes (MWCNTs) novel polymeric nanodielectric material. Journal of Electrostatics, 76, 95-101.
  • [14]. Pizzutto, C.E., et al., Study of epoxy/CNT nanocomposites prepared via dispersion in the hardener. Materials Research, 2011. 14(2): p. 256-263.
  • [15]. Kim, S.M., et al., The effect of copper pre-cleaning on graphene synthesis. Nanotechnology, 2013. 24(36): p. 365602.
  • [16]. Das, R., S.B.A. Hamid, and M.S.M. Annuar, Highly efficient and stable novel nanobiohybrid catalyst to avert 3, 4-dihydroxybenzoic acid pollutant in water. Scientific Reports, 2016. 6.
  • [17]. Sengar, S.K., et al., In-flight gas phase growth of metal/multi layer graphene core shell nanoparticles with controllable sizes. Scientific reports, 2013. 3: p. 2814.
  • [18].. Viswanadham, N., et al., Carbonized glycerol nanotubes as efficient catalysts for biofuel production. RSC Advances, 2016. 6(47): p. 41364-41368.

Cu-MWCNT Kompozitlerinin Yapısal Özellikleri

Yıl 2021, , 434 - 441, 31.08.2021
https://doi.org/10.18185/erzifbed.916241

Öz

Bakır/bakır oksit/karbon nanotüp (Cu/CuO/CNT) kompozit ince filmler, elektroforetik biriktirme (EPD) yöntemine benzer şekilde hazırlanmıştır. Nanotüp filmler SEM (Taramalı Elektron Mikroskopu), XPS ( X-Ray fotoelektron Spektroskopisi) ve FTIR (Fourier Dönüşümlü Kızılötesi Spektroskopisi) ile karakterize edilmiştir. EPD yöntemi ile bakır alttaş üzerine karbon nanotüpleri toplamak için karbon nanotüpler fonksiyonel hale getirilmiştir. Fonksiyonel hale getirilen karbon nanotüplerin negatif (OH-) olarak yüklendiği FTIR sonuçlarında gözlenmiştir. Kabron nanotüplerin EPD yöntemi ile bakır alttaş üzerine toplandığı SEM görüntüleri ile gösterilmiştir. XPS ölçümlerinde Cu, O ve C elementleri gözlenmiş, oksijen oranın oldukça fazla olduğu ve CuO oluşumu gözlenmiştir.


Kaynakça

  • [1]. Lassègue, P., Noé, L., Monthioux, M., & Caussat, B. (2017). Fluidized bed chemical vapor deposition of copper nanoparticles on multi-walled carbon nanotubes. Surface and Coatings Technology, 331, 129-136.
  • [2]. Kumar, S. S., Vairam, S., Neelakandeswari, N., & Aruna, S. (2018). New heterojunction solar cells using copper oxide ingrained MWCNT: Fabrication and performance analysis. Solar Energy, 166, 195-202.
  • [3]. Akbaba, U., Kasapoğlu, A. E., & Gür, E. (2018). Gamma and neutron irradiation effects on multi-walled carbon nanotubes. Diamond and Related Materials, 87, 242-247.
  • [4]. Faneca, G., Segura, I., Torrents, J. M., & Aguado, A. (2018). Development of conductive cementitious materials using recycled carbon fibres. Cement and Concrete Composites.
  • [5]. Staudinger, U., Thoma, P., Lüttich, F., Janke, A., Kobsch, O., Gordan, O. D., ... & Zahn, D. R. T. (2017). Properties of thin layers of electrically conductive polymer/MWCNT composites prepared by spray coating. Composites Science and Technology, 138, 134-143.
  • [6]. Shao, S., Zhou, S., Li, L., Li, J., Luo, C., Wang, J., ... & Weng, J. (2011). Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers. Biomaterials, 32(11), 2821-2833.
  • [7]. Chen, Y. F., Tan, Y. J., Li, J., Hao, Y. B., Shi, Y. D., & Wang, M. (2018). Graphene oxide-assisted dispersion of multi-walled carbon nanotubes in biodegradable Poly (ε-caprolactone) for mechanical and electrically conductive enhancement. Polymer Testing, 65, 387-397.
  • [8]. Dhall, S., & Jaggi, N. (2016). Effect of oxide nanoparticles on structural properties of multiwalled carbon nanotubes. Journal of Molecular Structure, 1107, 300-304.
  • [9]. Rezaee, S., Ghaderi, A., Boochani, A., & Solaymani, S. (2017). Synthesis of multiwalled carbon nanotubes on Cu-Fe nano-catalyst substrate. Results in physics, 7, 3640-3644.
  • [10]. Mandal, P., & Mondal, S. C. (2018). Investigation of Electro-Thermal property for Cu-MWCNT composite coating on anodized 6061 aluminium alloy. Applied Surface Science, 454, 138-147.
  • [11]. Huang, W., Li, J., Zhao, S., Han, F., Zhang, G., Sun, R., & Wong, C. P. (2017). Highly electrically conductive and stretchable copper nanowires-based composite for flexible and printable electronics. Composites Science and Technology, 146, 169-176.
  • [12]. Prakash, K. S., Thankachan, T., & Radhakrishnan, R. (2017). Parametric optimization of dry sliding wear loss of copper–MWCNT composites. Transactions of Nonferrous Metals Society of China, 27(3), 627-637.
  • [13]. Singh, R., Gaur, M. S., & Tiwari, R. K. (2015). Development of polyurethane multiwall carbon nanotubes (MWCNTs) novel polymeric nanodielectric material. Journal of Electrostatics, 76, 95-101.
  • [14]. Pizzutto, C.E., et al., Study of epoxy/CNT nanocomposites prepared via dispersion in the hardener. Materials Research, 2011. 14(2): p. 256-263.
  • [15]. Kim, S.M., et al., The effect of copper pre-cleaning on graphene synthesis. Nanotechnology, 2013. 24(36): p. 365602.
  • [16]. Das, R., S.B.A. Hamid, and M.S.M. Annuar, Highly efficient and stable novel nanobiohybrid catalyst to avert 3, 4-dihydroxybenzoic acid pollutant in water. Scientific Reports, 2016. 6.
  • [17]. Sengar, S.K., et al., In-flight gas phase growth of metal/multi layer graphene core shell nanoparticles with controllable sizes. Scientific reports, 2013. 3: p. 2814.
  • [18].. Viswanadham, N., et al., Carbonized glycerol nanotubes as efficient catalysts for biofuel production. RSC Advances, 2016. 6(47): p. 41364-41368.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Merve Acar 0000-0001-7290-9983

Mehmet Ertugrul 0000-0003-1921-7704

Yayımlanma Tarihi 31 Ağustos 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Acar, M., & Ertugrul, M. (2021). Structural Characterization Multi Walled Carbon Nanotube Films on Cu. Erzincan University Journal of Science and Technology, 14(2), 434-441. https://doi.org/10.18185/erzifbed.916241