Araştırma Makalesi
BibTex RIS Kaynak Göster

Green Synthesis of Reduced Graphene Oxide and Device Fabrication for Optoelectronic Applications

Yıl 2021, , 524 - 541, 31.08.2021
https://doi.org/10.18185/erzifbed.963116

Öz

Grafen, benzersiz özelliklerinden dolayı yeni geliştirilen fotoelekrik aygıtlar için olağanüstü bir malzeme olarak düşünülmektedir. Fakat, grafen tabanlı fotoelektrik cihazların performansı, grafen ve ışık arasındaki etkileşim uzunluğunun atomik kalınlığı nedeniyle sınırlıdır. Bu nedenle, sunulan bu çalışmada, metal-arayüzey-yarıiletken tipi Schottky heteroeklem üretimi için ışık absorpsiyonunu arttırmak adına grafen yerine grafen oksit (GO) ve indirgenmiş grafen oksit (rGO) gibi grafen türevleri kullanıldı. İlk olarak, modifiye Hummer yöntemi ile GO sentezi yapıldı, daha sonra indirgeyici ajan L-askorbik asit (LAA) kullanılarak kimyasal indirgeme yöntemi ile rGO sentezi gerçekleştirildi. Ardından, spin kaplama yöntemi kullanılarak GO/n-Si ve rGO/n-Si heteroeklem aygıtlarının fabrikasyonu yapıldı. Fabrikasyonu gerçekleştirilen aygıtların idealite faktörü (n), bariyer yüksekliği (Φb), doyma akımı (Io), difüzyon potansiyeli (Vd), taşıyıcı konsantrasyonu (Nd), Fermi enerji (Ef) gibi karateristik aygıt parametreleri, akım-voltaj (I-V) ve kapasitans-voltaj (C-V) ölçümleri kullanılarak tayin edildi. Ayrıca, oda sıcaklığında ışık aydınlatması altında rGO/n-Si heteroeklem aygıtının I-V ölçümleri gerçekleştirildi. Elde edilen sonuçlar sentezlenen rGO malzemesinin fotodiyotlar ve fotodedektörler gibi optoelektronik uygulamalarda kullanılabileceğini gösterdi.

Teşekkür

The author would like to express the gratefulness to Prof. Dr. Şakir Aydoğan for the material and laboratory support in this research.

Kaynakça

  • A, R.M., Iraqi, A., Aziz, S.B., S, N.A. and Brza, M.A. (2020). "Conducting Polymers for Optoelectronic Devices and Organic Solar Cells: A Review", Polymers (Basel), 12 (11).
  • Abdel-Khalek, H., El-Samahi, M.I., El Salam, M.A. and El-Mahalawy, A.M. (2018). "Fabrication and performance evaluation of ultraviolet photodetector based on organic /inorganic heterojunction". Current Applied Physics, 18 (12), 1496-1506.
  • Asare, J., Agyei-Tuffour, B., Amonoo, E.A., Dodoo-Arhin, D., Nyankson, E., Mensah, B., Oyewole, O.O., Yaya, A., Onwona-Agyeman, B. and Lomonaco, G. (2020). "Effects of substrates on the performance of optoelectronic devices: A review. Cogent Engineering", 7 (1), 1829274.
  • Bayrakçeken Yurtcan, A. and Daş, E. (2018). "Chemically synthesized reduced graphene oxide-carbon black based hybrid catalysts for PEM fuel cells", International Journal of Hydrogen Energy, 43 (40), 18691-18701.
  • Bhaumik, A. and Narayan, J. (2019). "Reduced Graphene Oxide-Nanostructured Silicon Photosensors with High Photoresponsivity at Room Temperature", ACS Applied Nano Materials, 2 (4), 2086-2098.
  • Chang, H. and Wu, H. (2013). "Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications". Energy & Environmental Science, 6 (12), 3483.
  • Choi, W., Lahiri, I., Seelaboyina, R. and Kang, Y.S. (2010). "Synthesis of Graphene and Its Applications: A Review", Critical Reviews in Solid State and Materials Sciences, 35 (1), 52-71.
  • Choi, Y.J., Woo, H.J., Kim, S., Sun, J., Kang, M.S., Song, Y.J. and Cho, J.H. (2020). "Schottky junction photodiode based on graphene organic semiconductor heterostructure". Journal of Industrial and Engineering Chemistry, 89, 233-238.
  • Chua, C.K. and Pumera, M. (2014). "Chemical reduction of graphene oxide: a synthetic chemistry viewpoint". Chem Soc Rev, 43 (1), 291-312.
  • Çaldıran, Z., Deniz A. R., Şahin, Y., Metin, Ö., Meral, K., Aydoğan, Ş. (2013). "The electrical characteristics of the Fe3O4/Si junctions", Journal of Alloys and Compounds. 552, 437-442.
  • Çaldıran, Z., (2021). "Modification of Schottky barrier height using an inorganic compound interface layer for various contact metals in the metal/p-Si device structure". Journal of Alloys and Compounds, 865, 158856.
  • Daş, E., Alkan Gürsel, S., Işikel Şanli, L. and Bayrakçeken Yurtcan, A. (2016). "Comparison of two different catalyst preparation methods for graphene nanoplatelets supported platinum catalysts", International Journal of Hydrogen Energy, 41 (23), 9755-9761.
  • Daş, E., Orhan, Z., Aydoğan, Ş. and Güzeldir, B. (2021). "Fabrication and characterization of Al/n-Si/Al schottky diode with rGO interfacial layer obtained by using spin coating method". Materials Today: Proceedings. In press, doi:10.1016/j.matpr.2021.01.554.
  • De Silva, K. K. H., Huang, H. H, Joshi, R. K., Yoshimura, M. (2017). "Chemical reduction of graphene oxide using green reductants", Carbon N Y, 119, 190–199. Ding, H., Zhang, S., Chen, J. T., Hu, X. P., Du, Z. F., Qiu, Y. X., Zhao, D. L. (2015). "Reduction of graphene oxide at room temperature with vitamin C for RGO-TiO2 photoanodes in dye-sensitized solar cell", Thin Solid Films 584, 29–36.
  • Dua, V., Surwade, S. P., Ammu, S., Agnihotra S. R., Jain, S., Roberts, K. E., Park, S., Rouff, R. S., Manohar, S. K. (2010). "All-organic vapor sensor using inkjet-printed reduced graphene oxide", Angew Chemie Int Ed, 49, 2154–2157.
  • Ertap, H., Kacus, H., Aydogan, S. and Karabulut, M. (2020). "Analysis of temperature dependent electrical characteristics of Au/GaSe Schottky barrier diode improved by Ce-doping", Sensors and Actuators A: Physical, 315, 112264.
  • Fernández-Merino, M. J., Guardia, L., Paredes, J. I. Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A., Tascon, J. M. D. (2010). "Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions", J. Phys. Chem. C, 114, 6426–6432.
  • Gao, H. and Duan, H. (2014). "2D and 3D graphene materials: Preparation and bioelectrochemical applications", Biosens Bioelectron, 65C, 404-419.
  • Ha, H.W., Choudhury, A., Kamal, T., Kim, D.H. and Park, S.Y. (2012). "Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites", ACS Appl Mater Interfaces, 4 (9), 4623-30.
  • Hummers, W.S. and Offeman, R.E. (1958). "Preparation of Graphitic Oxide", J. Am. Chem. Soc., 80, 1339.
  • Hur, S.H. and Park, J.-N. (2013). "Graphene and its application in fuel cell catalysis: a review". Asia-Pacific Journal of Chemical Engineering, 8 (2), 218-233.
  • Im, H. J., Ding, Y., Pelz, J. P., Choyke, W. J. (2001). "Nanometer-scale test of the Tung model of Schottky-barrier height inhomogeneity", Phys. Rev. B. 64, 075310. Iskandar, F., Hikmah, U., Stavila, E., Aimon A. (2017). "Microwave-assisted reduction method under nitrogen atmosphere for synthesis and electrical conductivity improvement of reduced graphene oxide (rGO)", RSC Adv, 7 (83):52391–52397.
  • Karabulut, A., Sarilmaz, A., Ozel, F., Orak, İ. and Şahinkaya, M.A. (2020). "A novel device fabricated with Cu2NiSnS4 chalcogenide: morphological and temperature-dependent electrical characterizations", Current Applied Physics, 20 (1), 58-64.
  • Kim, C.H. 2018. "Nanostructured Graphene: An Active Component in Optoelectronic Devices", Nanomaterials (Basel), 8 (5).
  • Liu, Y., Wang, F., Wang, X., Wang, X., Flahaut, E., Liu, X., Li, Y., Wang, X., Xu, Y., Shi, Y. and Zhang, R. (2015). "Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors", Nat Commun, 6, 8589.
  • Mao, S.; Pu, H.; Chen, J. (2012) "Graphene oxide and its reduction: modeling and experimental progress", RSC Advances, 2, 2643-2662.
  • Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., Geim, A. K. (2008). "Fine structure constant defines visual transparency of graphene", Science, 320, 1308.
  • Orhan, Z., Cinan, E., Çaldıran, Z., Kurucu, Y. and Daş, E. (2020). "Synthesis of CuO–graphene nanocomposite material and the effect of gamma radiation on CuO–graphene/p-Si junction diode", Journal of Materials Science: Materials in Electronics, 31 (15), 12715-12724.
  • Rabchinskii, M. K., Dideikin, A. T., Kirilenko, D. A., Baidakova, M. V., Shnitov, V. V., Roth, F. et. al. (2018). "Facile reduction of graphene oxide suspensions and film using glass wafers", Scientific Reports, 8, 14154.
  • Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T. and Ruoff, R.S. (2007). "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide", Carbon, 45 (7), 1558-1565.
  • Sui, Z., Zhang, X., Lei, Y., Luo, Y. (2011). "Easy and green synthesis of reduced graphite oxide-based hydrogels", Carbon N Y, 49, 4314–4321.
  • Yakuphanoğlu, F. (2010). "Controlling of silicom-insulator-metal junction by organic semiconductor polymer thin film", Synthetic Metals, 160, 1551-1555.
  • Zhu, X., Liu, Q., Zhu, X., Li, C., Xu, M. and Liang, Y. (2012). "Reduction of graphene oxide via ascorbic acid and its application for simultaneous detection of dopamine and ascorbic acid", Int. J. Electrochem. Sci, 7, 5172-5184.

İndirgenmiş Grafen Oksitin Yeşil Sentezi ve Optoelektronik Uygulamalar için Aygıt Fabrikasyonu

Yıl 2021, , 524 - 541, 31.08.2021
https://doi.org/10.18185/erzifbed.963116

Öz

Grafen, benzersiz özelliklerinden dolayı yeni geliştirilen fotoelekrik aygıtlar için olağanüstü bir malzeme olarak düşünülmektedir. Fakat, grafen tabanlı fotoelektrik cihazların performansı, grafen ve ışık arasındaki etkileşim uzunluğunun atomik kalınlığı nedeniyle sınırlıdır. Bu nedenle, sunulan bu çalışmada, metal-arayüzey-yarıiletken tipi Schottky heteroeklem üretimi için ışık absorpsiyonunu arttırmak adına grafen yerine grafen oksit (GO) ve indirgenmiş grafen oksit (rGO) gibi grafen türevleri kullanılmıştır. İlk olarak, modifiye Hummer yöntemi ile GO sentezi, daha sonra indirgeyici ajan L-askorbik asit (LAA) kullanılarak kimyasal indirgeme yöntemi ile rGO sentezi gerçekleştirildi. Sentezlenen malzemelerin yüzey morfolojileri, kimyasal bileşimleri ve optik özellikleri SEM-EDS ve UV-Vis-NIR spektrofotometre analizleri kullanılarak karakterize edildi. Ardından, spin kaplama yöntemi kullanılarak GO/n-Si ve rGO/n-Si heteroeklem aygıtlarının fabrikasyonu yapıldı. Fabrikasyonu gerçekleştirilen aygıtların karateristik eklem parametreleri akım-voltaj (I-V) ölçümleri kullanılarak tayin edildi. Elde edilen sonuçlar, rGO ince film tabakasının, GO ince film tabakasına kıyasla sahip olduğu geliştirilmiş özellikleri nedeniyle I-V karakteristikleri üzerinde önemli bir etkiye sahip olduğunu göstermektedir. Bu nedenle, rGO/n-Si heteroeklem aygıtının I-V ölçümleri sıcaklığın bir fonksiyonu olarak da incelenmiştir. Sonuçlar, idealite faktörünün (n) ve seri direncin (Rs) artan sıcaklıkla arttığını, bariyer yüksekliğinin (Φb) azaldığını ortaya koymaktadır. Ayrıca, oda sıcaklığında ışık aydınlatması altında rGO/n-Si heteroeklem aygıtının I-V ölçümleri de gerçekleştirilmiştir. Elde edilen sonuçlar sentezlenen rGO malzemesinin fotodiyotlar ve fotodedektörler gibi optoelektronik uygulamalarda kullanılabileceğini göstermektedir.


Kaynakça

  • A, R.M., Iraqi, A., Aziz, S.B., S, N.A. and Brza, M.A. (2020). "Conducting Polymers for Optoelectronic Devices and Organic Solar Cells: A Review", Polymers (Basel), 12 (11).
  • Abdel-Khalek, H., El-Samahi, M.I., El Salam, M.A. and El-Mahalawy, A.M. (2018). "Fabrication and performance evaluation of ultraviolet photodetector based on organic /inorganic heterojunction". Current Applied Physics, 18 (12), 1496-1506.
  • Asare, J., Agyei-Tuffour, B., Amonoo, E.A., Dodoo-Arhin, D., Nyankson, E., Mensah, B., Oyewole, O.O., Yaya, A., Onwona-Agyeman, B. and Lomonaco, G. (2020). "Effects of substrates on the performance of optoelectronic devices: A review. Cogent Engineering", 7 (1), 1829274.
  • Bayrakçeken Yurtcan, A. and Daş, E. (2018). "Chemically synthesized reduced graphene oxide-carbon black based hybrid catalysts for PEM fuel cells", International Journal of Hydrogen Energy, 43 (40), 18691-18701.
  • Bhaumik, A. and Narayan, J. (2019). "Reduced Graphene Oxide-Nanostructured Silicon Photosensors with High Photoresponsivity at Room Temperature", ACS Applied Nano Materials, 2 (4), 2086-2098.
  • Chang, H. and Wu, H. (2013). "Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications". Energy & Environmental Science, 6 (12), 3483.
  • Choi, W., Lahiri, I., Seelaboyina, R. and Kang, Y.S. (2010). "Synthesis of Graphene and Its Applications: A Review", Critical Reviews in Solid State and Materials Sciences, 35 (1), 52-71.
  • Choi, Y.J., Woo, H.J., Kim, S., Sun, J., Kang, M.S., Song, Y.J. and Cho, J.H. (2020). "Schottky junction photodiode based on graphene organic semiconductor heterostructure". Journal of Industrial and Engineering Chemistry, 89, 233-238.
  • Chua, C.K. and Pumera, M. (2014). "Chemical reduction of graphene oxide: a synthetic chemistry viewpoint". Chem Soc Rev, 43 (1), 291-312.
  • Çaldıran, Z., Deniz A. R., Şahin, Y., Metin, Ö., Meral, K., Aydoğan, Ş. (2013). "The electrical characteristics of the Fe3O4/Si junctions", Journal of Alloys and Compounds. 552, 437-442.
  • Çaldıran, Z., (2021). "Modification of Schottky barrier height using an inorganic compound interface layer for various contact metals in the metal/p-Si device structure". Journal of Alloys and Compounds, 865, 158856.
  • Daş, E., Alkan Gürsel, S., Işikel Şanli, L. and Bayrakçeken Yurtcan, A. (2016). "Comparison of two different catalyst preparation methods for graphene nanoplatelets supported platinum catalysts", International Journal of Hydrogen Energy, 41 (23), 9755-9761.
  • Daş, E., Orhan, Z., Aydoğan, Ş. and Güzeldir, B. (2021). "Fabrication and characterization of Al/n-Si/Al schottky diode with rGO interfacial layer obtained by using spin coating method". Materials Today: Proceedings. In press, doi:10.1016/j.matpr.2021.01.554.
  • De Silva, K. K. H., Huang, H. H, Joshi, R. K., Yoshimura, M. (2017). "Chemical reduction of graphene oxide using green reductants", Carbon N Y, 119, 190–199. Ding, H., Zhang, S., Chen, J. T., Hu, X. P., Du, Z. F., Qiu, Y. X., Zhao, D. L. (2015). "Reduction of graphene oxide at room temperature with vitamin C for RGO-TiO2 photoanodes in dye-sensitized solar cell", Thin Solid Films 584, 29–36.
  • Dua, V., Surwade, S. P., Ammu, S., Agnihotra S. R., Jain, S., Roberts, K. E., Park, S., Rouff, R. S., Manohar, S. K. (2010). "All-organic vapor sensor using inkjet-printed reduced graphene oxide", Angew Chemie Int Ed, 49, 2154–2157.
  • Ertap, H., Kacus, H., Aydogan, S. and Karabulut, M. (2020). "Analysis of temperature dependent electrical characteristics of Au/GaSe Schottky barrier diode improved by Ce-doping", Sensors and Actuators A: Physical, 315, 112264.
  • Fernández-Merino, M. J., Guardia, L., Paredes, J. I. Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A., Tascon, J. M. D. (2010). "Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions", J. Phys. Chem. C, 114, 6426–6432.
  • Gao, H. and Duan, H. (2014). "2D and 3D graphene materials: Preparation and bioelectrochemical applications", Biosens Bioelectron, 65C, 404-419.
  • Ha, H.W., Choudhury, A., Kamal, T., Kim, D.H. and Park, S.Y. (2012). "Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites", ACS Appl Mater Interfaces, 4 (9), 4623-30.
  • Hummers, W.S. and Offeman, R.E. (1958). "Preparation of Graphitic Oxide", J. Am. Chem. Soc., 80, 1339.
  • Hur, S.H. and Park, J.-N. (2013). "Graphene and its application in fuel cell catalysis: a review". Asia-Pacific Journal of Chemical Engineering, 8 (2), 218-233.
  • Im, H. J., Ding, Y., Pelz, J. P., Choyke, W. J. (2001). "Nanometer-scale test of the Tung model of Schottky-barrier height inhomogeneity", Phys. Rev. B. 64, 075310. Iskandar, F., Hikmah, U., Stavila, E., Aimon A. (2017). "Microwave-assisted reduction method under nitrogen atmosphere for synthesis and electrical conductivity improvement of reduced graphene oxide (rGO)", RSC Adv, 7 (83):52391–52397.
  • Karabulut, A., Sarilmaz, A., Ozel, F., Orak, İ. and Şahinkaya, M.A. (2020). "A novel device fabricated with Cu2NiSnS4 chalcogenide: morphological and temperature-dependent electrical characterizations", Current Applied Physics, 20 (1), 58-64.
  • Kim, C.H. 2018. "Nanostructured Graphene: An Active Component in Optoelectronic Devices", Nanomaterials (Basel), 8 (5).
  • Liu, Y., Wang, F., Wang, X., Wang, X., Flahaut, E., Liu, X., Li, Y., Wang, X., Xu, Y., Shi, Y. and Zhang, R. (2015). "Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors", Nat Commun, 6, 8589.
  • Mao, S.; Pu, H.; Chen, J. (2012) "Graphene oxide and its reduction: modeling and experimental progress", RSC Advances, 2, 2643-2662.
  • Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., Geim, A. K. (2008). "Fine structure constant defines visual transparency of graphene", Science, 320, 1308.
  • Orhan, Z., Cinan, E., Çaldıran, Z., Kurucu, Y. and Daş, E. (2020). "Synthesis of CuO–graphene nanocomposite material and the effect of gamma radiation on CuO–graphene/p-Si junction diode", Journal of Materials Science: Materials in Electronics, 31 (15), 12715-12724.
  • Rabchinskii, M. K., Dideikin, A. T., Kirilenko, D. A., Baidakova, M. V., Shnitov, V. V., Roth, F. et. al. (2018). "Facile reduction of graphene oxide suspensions and film using glass wafers", Scientific Reports, 8, 14154.
  • Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T. and Ruoff, R.S. (2007). "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide", Carbon, 45 (7), 1558-1565.
  • Sui, Z., Zhang, X., Lei, Y., Luo, Y. (2011). "Easy and green synthesis of reduced graphite oxide-based hydrogels", Carbon N Y, 49, 4314–4321.
  • Yakuphanoğlu, F. (2010). "Controlling of silicom-insulator-metal junction by organic semiconductor polymer thin film", Synthetic Metals, 160, 1551-1555.
  • Zhu, X., Liu, Q., Zhu, X., Li, C., Xu, M. and Liang, Y. (2012). "Reduction of graphene oxide via ascorbic acid and its application for simultaneous detection of dopamine and ascorbic acid", Int. J. Electrochem. Sci, 7, 5172-5184.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Elif Daş 0000-0002-3149-6016

Yayımlanma Tarihi 31 Ağustos 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Daş, E. (2021). Green Synthesis of Reduced Graphene Oxide and Device Fabrication for Optoelectronic Applications. Erzincan University Journal of Science and Technology, 14(2), 524-541. https://doi.org/10.18185/erzifbed.963116