Araştırma Makalesi
BibTex RIS Kaynak Göster

Enzyme Inhibition, Antimicrobial Potentials of Saponaria prostrata plant extracts

Yıl 2022, , 135 - 143, 27.03.2022
https://doi.org/10.18185/erzifbed.995560

Öz

Saponaria prostrata is a medicinal plant that contains various secondary metabolites such as phenolic acid, flavonoids, triterpenoids, and fatty acids that are related to some biological activities. In this study, we evaluated the enzyme inhibitory, antimicrobial potentials of S. prostrata. The antimicrobial activity of S. prostrata was measured using three Gram-positive, four Gram-negative bacteria species, and three fungi species. The highest antibacterial activity was detected against the Staphylococcus aureus ATCC 25923 (13±0.81 mm inhibition zone). The enzyme inhibition effect (IC50 values) of S. prostrata were calculated against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase (α-Gly) as 2.39 mg/mL, 3.69 mg/ml, and 2.48 mg/mL, respectively.

Kaynakça

  • Aras, A., Bursal, E., Alan, Y., Turkan, F., Alkan, H., & Kılıç, Ö. (2018). Polyphenolic content, antioxidant potential and antimicrobial activity of Satureja boissieri. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37(6), 209-219.
  • Aras, A., Dogru, M., & Bursal, E. (2016). Determination of antioxidant potential of Nepeta nuda subsp. lydiae. Analytical Chemistry Letters, 6(6), 758-765.
  • ATAŞLAR, E. (2004). Morphological and anatomical investigations on the Saponaria kotschyi Boiss.(Caryophyllaceae). Turkish Journal of Botany, 28(1-2), 193-199.
  • Bingol, M. N., & Bursal, E. (2018). LC-MS/MS Analysis of Phenolic Compounds and In Vitro Antioxidant potential of Stachys lavandulifolia Vahl. var. brachydon Boiss. International Letters of Natural Sciences, 72.
  • Bukhari, S. A., Salman, M., Numan, M., Javed, M. R., Zubair, M., & Mustafa, G. (2020). Characterization of antifungal metabolites produced by Lactobacillus plantarum and Lactobacillus coryniformis isolated from rice rinsed water. Molecular Biology Reports, 47(3), 1871-1881.
  • Bursal, E., Aras, A., Kılıç, Ö., Taslimi, P., Gören, A. C., & Gülçin, İ. (2019). Phytochemical content, antioxidant activity, and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α‐amylase, butyrylcholinesterase, and α‐glycosidase enzymes. Journal of food biochemistry, 43(3), e12776.
  • Chen, Y., Lin, H., Yang, H., Tan, R., Bian, Y., Fu, T., . . . Sun, H. (2017). Discovery of new acetylcholinesterase and butyrylcholinesterase inhibitors through structure-based virtual screening. RSC Advances, 7(6), 3429-3438.
  • Davis, P. (1975). Flora Of Turkey And The East Aegean Islands, Vol. 5, Edinburgh Univ. Pres, Edinburgh.
  • Davis, P. (1982a). Flora of Turkey-VII. In: Edinburg University Press.
  • Davis, P. (1982b). Satureja L. Flora of Turkey and the Aegean Islands, 7, 314-323.
  • dos Santos Miron, D., Crestani, M., Shettinger, M. R., Morsch, V. M., Baldisserotto, B., Tierno, M. A., . . . Vieira, V. L. P. (2005). Effects of the herbicides clomazone, quinclorac, and metsulfuron methyl on acetylcholinesterase activity in the silver catfish (Rhamdia quelen)(Heptapteridae). Ecotoxicology and Environmental Safety, 61(3), 398-403.
  • Essawi, T., & Srour, M. (2000). Screening of some Palestinian medicinal plants for antibacterial activity. Journal of Ethnopharmacology, 70(3), 343-349.
  • Jeevanandam, J., Madhumitha, R., & Saraswathi, N. Identification of potential phytochemical lead against diabetic cataract: An insilico approach. Journal of Molecular Structure, 1226, 129428.
  • Kartal, M. (2007). Intellectual property protection in the natural product drug discovery, traditional herbal medicine and herbal medicinal products. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 21(2), 113-119.
  • Kokoska, L., Polesny, Z., Rada, V., Nepovim, A., & Vanek, T. (2002). Screening of some Siberian medicinal plants for antimicrobial activity. Journal of Ethnopharmacology, 82(1), 51-53.
  • Kong, M., Xie, K., Lv, M., Li, J., Yao, J., Yan, K., . . . Ye, D. (2020). Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: Lessons learned and future promise. Biomedicine and Pharmacotherapy, 133, 110975.
  • Kossah, R., Zhang, H., & Chen, W. (2011). Antimicrobial and antioxidant activities of Chinese sumac (Rhus typhina L.) fruit extract. Food Control, 22(1), 128-132.
  • Li, W., Risacher, S. L., Gao, S., Boehm II, S. L., Elmendorf, J. S., Saykin, A. J., & Initiative, A. s. D. N. (2018). Type 2 diabetes mellitus and cerebrospinal fluid Alzheimer's disease biomarker amyloid β1-42 in Alzheimer's Disease Neuroimaging Initiative participants. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 10, 94-98.
  • Maadane, A., Merghoub, N., Ainane, T., El Arroussi, H., Benhima, R., Amzazi, S., . . . Wahby, I. (2015). Antioxidant activity of some Moroccan marine microalgae: Pufa profiles, carotenoids and phenolic content. Journal of biotechnology, 215, 13-19.
  • Murray, A. P., Faraoni, M. B., Castro, M. J., Alza, N. P., & Cavallaro, V. (2013). Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Current Neuropharmacology, 11(4), 388-413.
  • Nascimento, G. G., Locatelli, J., Freitas, P. C., & Silva, G. L. (2000). Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Brazilian Journal of Microbiology, 31(4), 247-256.
  • Nogrady, T., & Alai, M. (1983). Cholinergic neurotransmission in rotifers. In Biology of Rotifers (pp. 149-153): Springer.
  • Nuapia, Y., Chimuka, L., & Cukrowska, E. (2018). Assessment of heavy metals in raw food samples from open markets in two African cities. Chemosphere, 196, 339-346. doi:10.1016/j.chemosphere.2017.12.134
  • Pang, S., Jia, M., Gao, J., Liu, X., Guo, W., & Zhang, H. (2020). Effects of dietary patterns combined with dietary phytochemicals on breast cancer metastasis. Life Sciences, 118720.
  • Tao, Y., Zhang, Y., Cheng, Y., & Wang, Y. (2013). Rapid screening and identification of α‐glucosidase inhibitors from mulberry leaves using enzyme‐immobilized magnetic beads coupled with HPLC/MS and NMR. Biomedical Chromatography, 27(2), 148-155.
  • Taslimi, P., Caglayan, C., Farzaliyev, V., Nabiyev, O., Sujayev, A., Turkan, F., . . . Gulçin, İ. (2018). Synthesis and discovery of potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α‐glycosidase enzymes inhibitors: The novel N, N′‐bis‐cyanomethylamine and alkoxymethylamine derivatives. Journal of biochemical and molecular toxicology, 32(4), e22042.
  • Turan, N., Savci, A., Buldurun, K., Alan, Y., & Adigüzel, R. (2016). Synthesis and Chemical Structure Elucidation of Two Schiff Base Ligands, Their Iron (II) and Zinc (II) Complexes, and Antiradical, Antimicrobial, Antioxidant Properties. Letters in Organic Chemistry, 13(5), 343-351.
  • Turkan, F., Cetin, A., Taslimi, P., & Gulçin, İ. (2018). Some pyrazoles derivatives: Potent carbonic anhydrase, α‐glycosidase, and cholinesterase enzymes inhibitors. Archiv der Pharmazie, 351(10), 1800200.
  • Türkan, F., Atalar, M. N., Aras, A., Gülçin, İ., & Bursal, E. (2020). ICP-MS and HPLC analyses, enzyme inhibition and antioxidant potential of Achillea schischkinii Sosn. Bioorganic chemistry, 94, 103333.
  • Van Wyk, B.-E. (2008). A broad review of commercially important southern African medicinal plants. Journal of Ethnopharmacology, 119(3), 342-355.
  • WIDERA, E., & Covinsky, K. E. (2013). What Are Appropriate Palliative Interventions for Patients With. Evidence-based Practice of Palliative Medicine, 295.
  • Yan, X., Chen, T., Zhang, L., & Du, H. (2018). Study of the interactions of forsythiaside and rutin with acetylcholinesterase (AChE). International Journal of Biological Macromolecules, 119, 1344-1352.
  • Yan, Z., Yang, Q., Wang, X., Torres, O. L., Tang, S., Zhang, S., . . . Chen, J. (2019). Correlation between antibiotic-induced feeding depression and body size reduction in zooplankton (rotifer, Brachionus calyciflorus): Neural response and digestive enzyme inhibition. Chemosphere, 218, 376-383.
  • Zengin, G., Senkardes, I., Mollica, A., Picot-Allain, C. M. N., Bulut, G., Dogan, A., & Mahomoodally, M. F. (2018). New insights into the in vitro biological effects, in silico docking and chemical profile of clary sage–Salvia sclarea L. Computational Biology and Chemistry, 75, 111-119.
  • Zengin, G., Stefanucci, A., Rodrigues, M. J., Mollica, A., Custodio, L., Aumeeruddy, M. Z., & Mahomoodally, M. F. (2019). Scrophularia lucida L. as a valuable source of bioactive compounds for pharmaceutical applications: In vitro antioxidant, anti-inflammatory, enzyme inhibitory properties, in silico studies, and HPLC profiles. Journal of Pharmaceutical and Biomedical Analysis, 162, 225-233.
Yıl 2022, , 135 - 143, 27.03.2022
https://doi.org/10.18185/erzifbed.995560

Öz

Kaynakça

  • Aras, A., Bursal, E., Alan, Y., Turkan, F., Alkan, H., & Kılıç, Ö. (2018). Polyphenolic content, antioxidant potential and antimicrobial activity of Satureja boissieri. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37(6), 209-219.
  • Aras, A., Dogru, M., & Bursal, E. (2016). Determination of antioxidant potential of Nepeta nuda subsp. lydiae. Analytical Chemistry Letters, 6(6), 758-765.
  • ATAŞLAR, E. (2004). Morphological and anatomical investigations on the Saponaria kotschyi Boiss.(Caryophyllaceae). Turkish Journal of Botany, 28(1-2), 193-199.
  • Bingol, M. N., & Bursal, E. (2018). LC-MS/MS Analysis of Phenolic Compounds and In Vitro Antioxidant potential of Stachys lavandulifolia Vahl. var. brachydon Boiss. International Letters of Natural Sciences, 72.
  • Bukhari, S. A., Salman, M., Numan, M., Javed, M. R., Zubair, M., & Mustafa, G. (2020). Characterization of antifungal metabolites produced by Lactobacillus plantarum and Lactobacillus coryniformis isolated from rice rinsed water. Molecular Biology Reports, 47(3), 1871-1881.
  • Bursal, E., Aras, A., Kılıç, Ö., Taslimi, P., Gören, A. C., & Gülçin, İ. (2019). Phytochemical content, antioxidant activity, and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α‐amylase, butyrylcholinesterase, and α‐glycosidase enzymes. Journal of food biochemistry, 43(3), e12776.
  • Chen, Y., Lin, H., Yang, H., Tan, R., Bian, Y., Fu, T., . . . Sun, H. (2017). Discovery of new acetylcholinesterase and butyrylcholinesterase inhibitors through structure-based virtual screening. RSC Advances, 7(6), 3429-3438.
  • Davis, P. (1975). Flora Of Turkey And The East Aegean Islands, Vol. 5, Edinburgh Univ. Pres, Edinburgh.
  • Davis, P. (1982a). Flora of Turkey-VII. In: Edinburg University Press.
  • Davis, P. (1982b). Satureja L. Flora of Turkey and the Aegean Islands, 7, 314-323.
  • dos Santos Miron, D., Crestani, M., Shettinger, M. R., Morsch, V. M., Baldisserotto, B., Tierno, M. A., . . . Vieira, V. L. P. (2005). Effects of the herbicides clomazone, quinclorac, and metsulfuron methyl on acetylcholinesterase activity in the silver catfish (Rhamdia quelen)(Heptapteridae). Ecotoxicology and Environmental Safety, 61(3), 398-403.
  • Essawi, T., & Srour, M. (2000). Screening of some Palestinian medicinal plants for antibacterial activity. Journal of Ethnopharmacology, 70(3), 343-349.
  • Jeevanandam, J., Madhumitha, R., & Saraswathi, N. Identification of potential phytochemical lead against diabetic cataract: An insilico approach. Journal of Molecular Structure, 1226, 129428.
  • Kartal, M. (2007). Intellectual property protection in the natural product drug discovery, traditional herbal medicine and herbal medicinal products. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 21(2), 113-119.
  • Kokoska, L., Polesny, Z., Rada, V., Nepovim, A., & Vanek, T. (2002). Screening of some Siberian medicinal plants for antimicrobial activity. Journal of Ethnopharmacology, 82(1), 51-53.
  • Kong, M., Xie, K., Lv, M., Li, J., Yao, J., Yan, K., . . . Ye, D. (2020). Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: Lessons learned and future promise. Biomedicine and Pharmacotherapy, 133, 110975.
  • Kossah, R., Zhang, H., & Chen, W. (2011). Antimicrobial and antioxidant activities of Chinese sumac (Rhus typhina L.) fruit extract. Food Control, 22(1), 128-132.
  • Li, W., Risacher, S. L., Gao, S., Boehm II, S. L., Elmendorf, J. S., Saykin, A. J., & Initiative, A. s. D. N. (2018). Type 2 diabetes mellitus and cerebrospinal fluid Alzheimer's disease biomarker amyloid β1-42 in Alzheimer's Disease Neuroimaging Initiative participants. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 10, 94-98.
  • Maadane, A., Merghoub, N., Ainane, T., El Arroussi, H., Benhima, R., Amzazi, S., . . . Wahby, I. (2015). Antioxidant activity of some Moroccan marine microalgae: Pufa profiles, carotenoids and phenolic content. Journal of biotechnology, 215, 13-19.
  • Murray, A. P., Faraoni, M. B., Castro, M. J., Alza, N. P., & Cavallaro, V. (2013). Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Current Neuropharmacology, 11(4), 388-413.
  • Nascimento, G. G., Locatelli, J., Freitas, P. C., & Silva, G. L. (2000). Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Brazilian Journal of Microbiology, 31(4), 247-256.
  • Nogrady, T., & Alai, M. (1983). Cholinergic neurotransmission in rotifers. In Biology of Rotifers (pp. 149-153): Springer.
  • Nuapia, Y., Chimuka, L., & Cukrowska, E. (2018). Assessment of heavy metals in raw food samples from open markets in two African cities. Chemosphere, 196, 339-346. doi:10.1016/j.chemosphere.2017.12.134
  • Pang, S., Jia, M., Gao, J., Liu, X., Guo, W., & Zhang, H. (2020). Effects of dietary patterns combined with dietary phytochemicals on breast cancer metastasis. Life Sciences, 118720.
  • Tao, Y., Zhang, Y., Cheng, Y., & Wang, Y. (2013). Rapid screening and identification of α‐glucosidase inhibitors from mulberry leaves using enzyme‐immobilized magnetic beads coupled with HPLC/MS and NMR. Biomedical Chromatography, 27(2), 148-155.
  • Taslimi, P., Caglayan, C., Farzaliyev, V., Nabiyev, O., Sujayev, A., Turkan, F., . . . Gulçin, İ. (2018). Synthesis and discovery of potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α‐glycosidase enzymes inhibitors: The novel N, N′‐bis‐cyanomethylamine and alkoxymethylamine derivatives. Journal of biochemical and molecular toxicology, 32(4), e22042.
  • Turan, N., Savci, A., Buldurun, K., Alan, Y., & Adigüzel, R. (2016). Synthesis and Chemical Structure Elucidation of Two Schiff Base Ligands, Their Iron (II) and Zinc (II) Complexes, and Antiradical, Antimicrobial, Antioxidant Properties. Letters in Organic Chemistry, 13(5), 343-351.
  • Turkan, F., Cetin, A., Taslimi, P., & Gulçin, İ. (2018). Some pyrazoles derivatives: Potent carbonic anhydrase, α‐glycosidase, and cholinesterase enzymes inhibitors. Archiv der Pharmazie, 351(10), 1800200.
  • Türkan, F., Atalar, M. N., Aras, A., Gülçin, İ., & Bursal, E. (2020). ICP-MS and HPLC analyses, enzyme inhibition and antioxidant potential of Achillea schischkinii Sosn. Bioorganic chemistry, 94, 103333.
  • Van Wyk, B.-E. (2008). A broad review of commercially important southern African medicinal plants. Journal of Ethnopharmacology, 119(3), 342-355.
  • WIDERA, E., & Covinsky, K. E. (2013). What Are Appropriate Palliative Interventions for Patients With. Evidence-based Practice of Palliative Medicine, 295.
  • Yan, X., Chen, T., Zhang, L., & Du, H. (2018). Study of the interactions of forsythiaside and rutin with acetylcholinesterase (AChE). International Journal of Biological Macromolecules, 119, 1344-1352.
  • Yan, Z., Yang, Q., Wang, X., Torres, O. L., Tang, S., Zhang, S., . . . Chen, J. (2019). Correlation between antibiotic-induced feeding depression and body size reduction in zooplankton (rotifer, Brachionus calyciflorus): Neural response and digestive enzyme inhibition. Chemosphere, 218, 376-383.
  • Zengin, G., Senkardes, I., Mollica, A., Picot-Allain, C. M. N., Bulut, G., Dogan, A., & Mahomoodally, M. F. (2018). New insights into the in vitro biological effects, in silico docking and chemical profile of clary sage–Salvia sclarea L. Computational Biology and Chemistry, 75, 111-119.
  • Zengin, G., Stefanucci, A., Rodrigues, M. J., Mollica, A., Custodio, L., Aumeeruddy, M. Z., & Mahomoodally, M. F. (2019). Scrophularia lucida L. as a valuable source of bioactive compounds for pharmaceutical applications: In vitro antioxidant, anti-inflammatory, enzyme inhibitory properties, in silico studies, and HPLC profiles. Journal of Pharmaceutical and Biomedical Analysis, 162, 225-233.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Abdülmelik Aras 0000-0001-7711-3298

Yusuf Alan 0000-0002-1155-7707

Yayımlanma Tarihi 27 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Aras, A., & Alan, Y. (2022). Enzyme Inhibition, Antimicrobial Potentials of Saponaria prostrata plant extracts. Erzincan University Journal of Science and Technology, 15(1), 135-143. https://doi.org/10.18185/erzifbed.995560