Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Solution Concentration and Thickness on the CuO Thin Film Grown with SILAR Technique

Yıl 2020, Cilt: 13 Sayı: 1, 171 - 180, 20.03.2020
https://doi.org/10.18185/erzifbed.629161

Öz

When thin film growth with SILAR technique is compared
with other chemical techniques; more attractive, cheaper, simpler and less time
consuming is preferred.The most important advantage of this technique is that
some parameters such as time, thickness, number of immersion, solution
concentration, temperature and pH of solution can be easily controlled during
growth. In this study, the solution concentration was taken into consideration
and CuO thin films were grown on the glass surface by using SILAR technique at
different solution concentrations and different numbers of immersion. The
structural and optical properties of the obtained CuO thin films were
investigated according to the solution concentration and the number of
immersion. X-Ray diffraction (XRD), Atomic Force Microscopy (AFM), Scanning
Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDAX) were used for
structural analysis and UV-vis spectrometer for optical analysis. The XRD data
revealed that the films were crystallized in nano-size and that the quality of
the crystallisation varied depending on the concentration of the solution.

Kaynakça

  • Özgür Ü, Alivov YaI, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho SJ,ve diğerleri. 2005. “A comprehensive review of ZnO materials and devices 2”, J Appl Phys, 98, 41301-41403.
  • Chandiramouli R, Jeyaprakash B G. 2013. “Review of CdO thin films”, Solid State Sci, 16, 102-110.
  • Presley, R. E., Munsee C L, Park C-H, Hong D, Wager J F, Keszler DA. 2004. “Tin oxide transparent thin-film transistors”, J Phys D Appl Phys, 37, 2810-2813.
  • Tanemura, S. Miao L, Wunderlich W, Tanemura M, Mori Y, Toh S, Kaneko K. 2005. “Fabrication and characterization of anatase/rutile–TiO2 thin films by magnetron sputtering: a review”, Sci Technol Adv Mater 6, 11-17.
  • Akaltun, Y. Çayır, T. 2015.“Fabrication and characterization of NiO thin films prepared by SILAR method”, J Allys and Compds 625, 144–148.
  • Çayır Taşdemirci, T. 2019. “Influence of annealing on properties of SILAR deposited nickel oxide films”, Vacuum, 167, 189-194.
  • Zatsepin D A, Boukhvalov D W, Zatsepin Yu A F, Kuznetsova A, Gogova D, Ya Shur V, Esin A A. 2018. “Atomic structure, electronic states, and optical properties of epitaxially grown β-Ga2O3 layers”, Superlattice Microst, 120, 90-100.
  • Gogova D, Gesheva K, Kakanakova-Georgieva A, Surtchev M. 2000. “Investigation of the structure of tungsten oxide films obtained by chemical vapor deposition”, Eur. Phys. J Appl Phys, 11, 167-174.
  • Raghavendra P V, Bhat J S, Deshpande N G. 2018. “Visible light sensitive cupric oxide metal-semiconductor-metal photodetectors”, Superlattice Microst, 113,754-760.Carvalho A T, Lima R R, Silva L M, Fachini E, Silva M L P. 2008. “Nanostructured copper thin film used for catalysis”, Sensor Actuator B Chem, 130, 141-149.
  • Gençyılmaz O, Taşkopru T. 2017. “Effect of pH on the synthesis of CuO films by SILAR method”, J Alloy Comp, 695, 1205-1212.
  • Sun S, Zhang X, Sun Y, Yang S, Song X, Yang Z. 2013. “Hierarchical CuO nanoflowers: water-required synthesis and their application in a nonenzymatic glucose biosensor”, Phys Chem Chem Phys 15, 10904-10913.
  • Lin M Y, Lee C Y, Shiu S C, Wang I J, Sun J Y, Wu W H, Lin Y H, Huang J S, Lin C F. 2010. “Sol–gel processed CuOx thin film as an anode interlayer for inverted polymer solar cells”, Org Electron, 11, 1828-1834.
  • Bari R H, Patil S B, Bari A R. 2013. “Spray-pyrolized nanostructured CuO thin films for H2S gas sensor”, Int. Nano Lett, 3, 1-5.
  • Qiu G, Dharmarathna S, Zhang Y, Opembe N, Huang H., Suib S L. 2012. “Facile microwave-assisted hydrothermal synthesis of CuO nanomaterials and their catalytic and electrochemical properties”, J. Phys. Chem. C, 116, 468-477.
  • Dhanasekaran V, Mahalingam T, Chandramohan R, Rhee J K, Chu J P. 2012. “Electrochemical deposition and characterization of cupric oxide thin films” Thin Solid Films, 520, 6608-6613.
  • Dubal D P, Gund G S, Holze R, Jadhav H S, Lokhande C D, Park C J. 2013. “Surfactant-assisted morphological tuning of hierarchical CuO thin films for electrochemical supercapacitors”, Dalton Trans, 42, 6459-6467.
  • Çayır Taşdemirci T. 2019. “Study of the physical properties of CuS thin films grown by SILAR method”, Opt and Quant Elect. 51, 245-253.
  • Çayır Taşdemirci T. 2019. “Effect of Different Thickness and Solution Concentration on CuS Thin Film Grown By SILAR Method” Journal of Scientific Perspectives, 3, 207-214.

Çözelti Konsantrasyonu ve Kalınlığın SILAR Tekniği ile Büyütülen CuO İnce Filmi Üzerine Etkisi

Yıl 2020, Cilt: 13 Sayı: 1, 171 - 180, 20.03.2020
https://doi.org/10.18185/erzifbed.629161

Öz

SILAR
tekniği ile ince film büyütmek diğer kimyasal tekniklerle mukayese edildiğinde;
daha çekici, daha ucuz, daha basit ve az zaman harcanmasından dolayı daha çok
tercih edilmektedir. Bu tekniğin en önemli avantajı, büyüme boyunca zaman,
kalınlık, daldırma sayısı, çözelti konsantrasyonu, sıcaklık ve çözelti pH’sı
gibi bazı parametrelerin kolay kontrol edilebilir olmasıdır. Bu çalışmada
çözelti konsantrasyonu ele alınarak CuO ince filmleri farklı çözelti
konsantrasyonlarında ve farklı daldırma sayılarında SILAR tekniği kullanılarak
cam yüzey üzerine büyütülmüştür. Elde edilen CuO ince filmlerin yapısal ve
optiksel özelliklerinde çözelti konsantrasyonu ve daldırma sayısına göre
meydana gelen değişiklikler incelenmiştir. Yapısal analizler için X-Işını
difraksiyon (XRD), Atomik kuvvet mikroskobu (AFM), Taramalı Elektron mikroskobu
(SEM) ve Enerji dağılımlı X-Işını spektrometresi (EDAX), optiksel analizler
için UV-Vis spektrometresi kullanılmıştır. XRD verileri filmlerin nano boyutta
kristalize olduklarını ve kristallenme kalitesinin çözelti konsantrasyonuna
bağlı olarak değiştiğini açığa çıkarmıştır.
 

Kaynakça

  • Özgür Ü, Alivov YaI, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho SJ,ve diğerleri. 2005. “A comprehensive review of ZnO materials and devices 2”, J Appl Phys, 98, 41301-41403.
  • Chandiramouli R, Jeyaprakash B G. 2013. “Review of CdO thin films”, Solid State Sci, 16, 102-110.
  • Presley, R. E., Munsee C L, Park C-H, Hong D, Wager J F, Keszler DA. 2004. “Tin oxide transparent thin-film transistors”, J Phys D Appl Phys, 37, 2810-2813.
  • Tanemura, S. Miao L, Wunderlich W, Tanemura M, Mori Y, Toh S, Kaneko K. 2005. “Fabrication and characterization of anatase/rutile–TiO2 thin films by magnetron sputtering: a review”, Sci Technol Adv Mater 6, 11-17.
  • Akaltun, Y. Çayır, T. 2015.“Fabrication and characterization of NiO thin films prepared by SILAR method”, J Allys and Compds 625, 144–148.
  • Çayır Taşdemirci, T. 2019. “Influence of annealing on properties of SILAR deposited nickel oxide films”, Vacuum, 167, 189-194.
  • Zatsepin D A, Boukhvalov D W, Zatsepin Yu A F, Kuznetsova A, Gogova D, Ya Shur V, Esin A A. 2018. “Atomic structure, electronic states, and optical properties of epitaxially grown β-Ga2O3 layers”, Superlattice Microst, 120, 90-100.
  • Gogova D, Gesheva K, Kakanakova-Georgieva A, Surtchev M. 2000. “Investigation of the structure of tungsten oxide films obtained by chemical vapor deposition”, Eur. Phys. J Appl Phys, 11, 167-174.
  • Raghavendra P V, Bhat J S, Deshpande N G. 2018. “Visible light sensitive cupric oxide metal-semiconductor-metal photodetectors”, Superlattice Microst, 113,754-760.Carvalho A T, Lima R R, Silva L M, Fachini E, Silva M L P. 2008. “Nanostructured copper thin film used for catalysis”, Sensor Actuator B Chem, 130, 141-149.
  • Gençyılmaz O, Taşkopru T. 2017. “Effect of pH on the synthesis of CuO films by SILAR method”, J Alloy Comp, 695, 1205-1212.
  • Sun S, Zhang X, Sun Y, Yang S, Song X, Yang Z. 2013. “Hierarchical CuO nanoflowers: water-required synthesis and their application in a nonenzymatic glucose biosensor”, Phys Chem Chem Phys 15, 10904-10913.
  • Lin M Y, Lee C Y, Shiu S C, Wang I J, Sun J Y, Wu W H, Lin Y H, Huang J S, Lin C F. 2010. “Sol–gel processed CuOx thin film as an anode interlayer for inverted polymer solar cells”, Org Electron, 11, 1828-1834.
  • Bari R H, Patil S B, Bari A R. 2013. “Spray-pyrolized nanostructured CuO thin films for H2S gas sensor”, Int. Nano Lett, 3, 1-5.
  • Qiu G, Dharmarathna S, Zhang Y, Opembe N, Huang H., Suib S L. 2012. “Facile microwave-assisted hydrothermal synthesis of CuO nanomaterials and their catalytic and electrochemical properties”, J. Phys. Chem. C, 116, 468-477.
  • Dhanasekaran V, Mahalingam T, Chandramohan R, Rhee J K, Chu J P. 2012. “Electrochemical deposition and characterization of cupric oxide thin films” Thin Solid Films, 520, 6608-6613.
  • Dubal D P, Gund G S, Holze R, Jadhav H S, Lokhande C D, Park C J. 2013. “Surfactant-assisted morphological tuning of hierarchical CuO thin films for electrochemical supercapacitors”, Dalton Trans, 42, 6459-6467.
  • Çayır Taşdemirci T. 2019. “Study of the physical properties of CuS thin films grown by SILAR method”, Opt and Quant Elect. 51, 245-253.
  • Çayır Taşdemirci T. 2019. “Effect of Different Thickness and Solution Concentration on CuS Thin Film Grown By SILAR Method” Journal of Scientific Perspectives, 3, 207-214.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tuba Çayır Taşdemirci 0000-0001-9519-8483

Yayımlanma Tarihi 20 Mart 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 13 Sayı: 1

Kaynak Göster

APA Çayır Taşdemirci, T. (2020). Çözelti Konsantrasyonu ve Kalınlığın SILAR Tekniği ile Büyütülen CuO İnce Filmi Üzerine Etkisi. Erzincan University Journal of Science and Technology, 13(1), 171-180. https://doi.org/10.18185/erzifbed.629161