Yıl 2020, Cilt 13 , Sayı 1, Sayfalar 162 - 170 2020-03-20

Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials
Kalsit Takviyeli Poli (Laktik Asit) Kompozit Malzemelerinin Hazırlanması ve Karakterizasyonu

Ali Sinan DİKE [1]


In this work, calcite (KS) mineral was compounded with poly (lactic acid) (PLA) at the concentrations of 5, 10, 15 and 20 wt% using extrusion process. Test samples of PLA and composites were prepared by injection molding. Characterization of composites were done based on mechanical tests including tensile, hardness and impact tests, flow behavior by melt flow rate test (MFR) and morphological studies by scanning electron microscopy (SEM) method.[A1]  Mechanical test results showed that the highest improvements in tensile strength and tensile modulus values were obtained for 10 wt% of KS filled composite. Further addition of KS caused remarkable decrease in tensile strength. Impact strength of PLA reduced by KS additions. The highest impact energy value was found in PLA-15 KS sample among composites. Hardness of neat PLA increased after KS inclusions. KS loaded PLA gave slightly higher MFR values compared to neat PLA. SEM micro-images of composites implied that KS particles dispersed homogeneously in PLA matrix at their lower loading ratio. Large agglomerates and poor dispersion were obtained for higher concentrations of KS since they favor particle-particle interactions. According to these results, concentrations of 10wt% and 15wt% were determined as suitable for calcite containing PLA composites.


 [A1]Bu cümleyi yeniden yazabilir misiniz? Biraz karışık olmuş. Konuyu bilmeyen biri okuduğunda sertlik, çekme ve darbe testlerinin mekanik olduğunu bilmeyebilir. Bunu ayrı cümlelerde yazarsanız daha iyi olur.

Bu çalışmada, kalsit (KS) minerali ağırlıkça %5, 10, 15 ve 20 konsantrasyonlarında poli (laktik asit) (PLA) ile ekstrüzyon işlemi kullanılarak karıştırılmıştır. PLA ve kompozitlerin test numuneleri enjeksiyon kalıplama ile hazırlanmıştır. Kompozitlerin karakterizasyonları, çekme, sertlik ve darbe testlerini içeren mekanik testler, erime akış hızı testi (MFR) ile akış davranışı ve taramalı elektron mikroskopi (SEM) yöntemi ile morfolojik çalışmalar baz alınarak yapılmıştır. Mekanik test sonuçları, çekme dayanım ve modülde en yüksek artışa %10 KS eklenmiş kompozitte saptandığını göstermiştir. Daha fazla KS eklenmesi çekme dayanımında belirgin düşüşe neden olmuştur. PLA’nın darbe dayanımı KS eklenmesi ile azalmıştır. Kompozitler arasında en yüksek darbe enerjisi PLA-15 KS numunesinde bulunmuştur. Eklentisiz PLA’nın sertliği KS eklemelerinden sonra artmıştır. Eklentisiz PLA’ya kıyasla, KS takviyeli PLA biraz yüksek MFR değerleri vermiştir. Kompozitlerin SEM mikro-resimleri göstermiştir ki; KS parçacıkları düşük ekleme oranlarında PLA matrisi içinde homojen şekilde dağılmıştır. KS yüksek konsantrasyonlarda parçacık-parçacık etkileşimlerini tercih ettiğinden büyük aglomeratlar ve zayıf dağılım gözlenmiştir. Bu sonuçlara göre, %10 ve %15 konsantrasyonları kalsit içeren PLA kompozitleri için uygun olarak belirlenmiştir.

  • 1. Ayaz, M., Ghasemi, F.A., Rahimloo, V.P. and Menbari, S. 2018. “Multi-response optimization of the mechanical properties of PP/talc/CaCO3 ternary nanocomposites by the response surface methodology combined with desirability function approach”, Journal of Elastomers & Plastics, DOI: 10.1177/0095244318819184
  • 2. Bajpai, P.K., Singh,I. and Madaan, J. 2012. “Development and characterization of PLA-based green composites: A review”, Journal of Thermoplastic Composite Materials, 27, 52-81. DOI: 10.1177/0892705712439571
  • 3. Betingytė, V., Žukienė, K., Jankauskaitė, V., Milašienė, D., Mickus, K.V. and Gulbinienė, A., 2012. “Influence of calcium carbonate fillers on the properties of recycled poly (e-caprolactone) based thermoplastic polyurethane”, Materials Science, 18(3), 243-249. DOI: 10.5755/j01.ms.18.3.2433
  • 4. Bismarck, A., Baltazar, A., Jimenez, Y. and Sarikakis, K. 2006. “Green composites as panacea? Socio-economic aspects of green materials”, Environment, Development and Sustainability, 8(3), 445-463. DOI: 10.1007/s10668-005-8506-5
  • 5. Brown, T. (1999) “Handbook of Polymer Testing-Physical Methods”, Rapra Technology, Shawbury.
  • 6. Cacciotti, I., Mori, S., Cherubini, V. and Nanni, F. 2018. “Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging”, International Journal of Biological Macromolecules, 112, 567-575. DOI: 10.1016/j.ijbiomac.2018.02.018
  • 7. Cho, S.B., Kikuchi, M., Suetsugu, Y. and Tanaka, J. 1997. “Novel calcium phosphate/polylactide composites-its in vitro evaluation”, Key Engineering Materials, 132-136, 802-805. DOI: 10.4028/www.scientific.net/KEM.132-136.802
  • 8. Demjen, Z., Pukanszky, B. and Nagy, J. 1998. “Evaluation of interfacial interaction in polypropylene surface treated CaCO3 composites”, Composites Part A: Applied Science and Manufacturing, 29, 323–329. DOI: 10.1016/S1359-835X(97)00032-8
  • 9. Dike, A.S., Tayfun, U. and Dogan, M. 2017. “Influence of zinc borate on flame retardant and thermal properties of polyurethane elastomer composites containing huntite&hydromagnesite mineral”, Fire and Materials, 41(7), 890-897. DOI: 10.1002/fam.2428
  • 10. Dike, A.S. and Yilmazer U. 2019. “Improvement of organoclay dispersion into polystyrenebased nanocomposites by incorporation of SBS and maleic anhydride-grafted SBS”, Journal of Thermoplastic Materials, DOI: 10.1177/0892705719882998
  • 11. Dogan, M. and Bayramli, E. 2009. “Effect of polymer additives and process temperature on the physical properties of bitumen-based composites”, Journal of Applied Polymer Science, 113(4), 2331-2338. DOI: 10.1002/app.30280
  • 12. Eselini, N., Tirkes, S., Akar, A.O. and Tayfun, U. 2019. “Production and characterization of poly (lactic acid)-based biocomposites filled with basalt fiber and flax fiber hybrid”, Journal of Elastomers & Plastics, DOI: 10.1177/0095244319884716
  • 13. Fuad, M.Y.A., Hanim, H., Zarina. R., Ishak, Z.H.M. and Hassan, A. 2010. “Polypropylene/calcium carbonate nanocomposites effects of processing techniques and maleated polypropylene compatibiliser”, Express Polymer Letters, 4, 611–620. DOI: 10.3144/expresspolymlett.2010.76
  • 14. Gahleitner, M., Grein, C. and Bernreitner, K. 2012. “Synergistic mechanical effects of calcite micro- and nanoparticles and β-nucleation in polypropylene copolymers”, European Polymer Journal, 48(1), 49-59. DOI: 10.1016/j.eurpolymj.2011.10.013
  • 15. Ge, C., Ding, P., Shi, L. and Fu, J. 2009. “Isothermal crystallization kinetics and melting behavior of poly(ethylene terephthalate)/barite nanocomposites”, Journal of Polymer Science B Polymer Physics, 47, 655-668. DOI: 10.1002/polb.21669
  • 16. Gorna, K., Hund, M., Vucak, M., Grohn, F. and Wegner, G. 2008. Amorphous calcium carbonate in form of spherical nanosized particles and its application as fillers for polymers”, Materials Science and Engineering: A, 477, 217-225. DOI: 10.1016/j.msea.2007.05.045
  • 17. Isitman, N.A., Dogan, M., Bayramli, E. and Kaynak, C. 2011. Fire retardant properties of intumescent polypropylene composites filled with calcium carbonate”, Polymer Engineering and Science, 51(5), 875-883. DOI: 10.1002/pen.21901
  • 18. Jerzy, W. (1993) “Fillers’’, Chem Tech Publishing, Toronto.
  • 19. Jiang, L., Zhang, J. and Wolcott, M.P. 2007. Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms”, Polymer, 48, 7632-7644. DOI: 10.1016/j.polymer.2007.11.001
  • 20. Jikan, S.S., Samsudin, M.S.F., Ariff, Z.M., Ishak, Z.A.M. and Ariffin, A. 2009. Relationship of rheological study with morphological characteristics of multicomponent (talc and calcium carbonate) filled polypropylene hybrid composites”, Journal of Reinforced Plastics and Composites, 28(21), 2577-2587. DOI: 10.1177/0731684408092440
  • 21. Kanbur, Y. and Tayfun, U. 2017. Mechanical, physical and morphological properties of polypropylene/huntite composites”, Sakarya University Journal of Science, 21(5), 1045-1050. DOI: 10.16984/saufenbilder.281035
  • 22. Kanbur, Y. and Tayfun, U. 2018. Mechanical, physical and morphological properties of acidic and basic pumice containing polypropylene composites”, Sakarya University Journal of Science, 22(2), 333-339. DOI: 10.16984/saufenbilder.287861
  • 23. Kasuga, T., Maeda, H., Kato, K., Nogami, M., Hata, K.I. and Ueda, M. 2003. Preparation of poly (lactic acid) composites containing calcium carbonate (vaterite) ”, Biomaterials, 24(19), 3247-3253. DOI: 10.1016/S0142-9612(03)00190-X
  • 24. Kiehl, J., Huser, J., Bistac, S., & Delaite, C. (2012). Influence of fillers content on the viscosity of unsaturated polyester resin/calcium carbonate blends”, Journal of Composite Materials, 46(16), 1937–1942. DOI: 10.1177/0021998311427780
  • 25. Lezak, E., Kulinski, Z. Masirek, R. Piorkowska, E. Pracella, M. and Gadzinowska, K. 2008. Mechanical and thermal properties of green polylactide composites with natural fillers”, Macromolecular Bioscience, 8, 1190-1200. DOI: 10.1002/mabi.200800040
  • 26. Liang J.Z. 2013. Reinforcement and quantitative description of inorganic particulate-filled polymer composites”, Composites Part B: Engineering, 51, 224-232. DOI: 10.1016/j.compositesb.2013.03.019
  • 27. Maeda, H. Kasuga, T., Nogami, M., Hibino, Y., Hata, K., Ueda, M. and Ota, Y. 2002. Biomimetic apatite formation on poly(lactic acid) composites containing calcium carbonates”, Journal of Materials Reseach, 17, 727-730. DOI: 10.1557/JMR.2002.0104
  • 28. Maeda, H. Kasuga, T. Nogami, M. Hibino, Y. Hata, K. Ueda, M. and Ota Y. 2002. Preparation of bioactive polylactic acid composites containing calcium carbonates”, Key Engineering Materials, 240-242, 163-166. DOI: 10.4028/www.scientific.net/KEM.240-242.163
  • 29. Mann, G.S., Singh, L.P., Kumar, P. and Singh, S. 2018. “Green composites: A review of processing technologies and recent applications”, Journal of Thermoplastic Composite Materials, DOI: 10.1177/0892705718816354
  • 30. Mat, N.S.C., Ismail, H. and Othman, N. 2017. Curing characteristics and mechanical and aging properties of ethylene propylene diene monomer/calcium carbonate/bentonite hybrid composites”, Journal of Elastomers & Plastics, 49(5), 397–407. DOI: 10.1177/0095244316663812
  • 31. Metin, D., Tihminhoglu, F., Balkose, D. and Ulku, S. 2004. The effect of interfacial interactions on the mechanical properties of polypropylene/natural zeolite composites”, Composites Part A: Applied Science and Manufacturing, 35(1), 23-32. DOI: 10.1016/j.compositesa.2003.09.021
  • 32. Murariu, M. and Dubois, P. 2016. PLA composites: From production to properties”, Advanced Drug Delivery Reviews, 107, 17-46. DOI: 10.1016/j.addr.2016.04.003
  • 33. Ozen, I. and Simsek, S. 2016. Effect of stretching temperature on breathability and waterproofness properties of polyethylene films containing different calcium carbonates”, Journal of Plastic Film & Sheeting, 32(4), 380–401. DOI: 10.1177/8756087915597025
  • 34. Piekarska, K., Sowinski, P., Piorkowska, E., Haque, M.M.U. and Pracella, M. 2016. Structure and properties of hybrid PLA nanocomposites with inorganic nanofillers and cellulose fibers”, Composites Part A: Applied Science and Manufacturing, 82, 34-41. DOI: 10.1016/j.compositesa.2015.11.019
  • 35. Rasal, R.M., Janorkar, A.V. and Hirt, D.E. 2010. Poly (lactic acid) modifications”, Progress in Polymer Science, 35, 338-356. DOI: 10.1016/j.progpolymsci.2009.12.003
  • 36. Ren, J. (2011). Biodegradable poly (lactic acid): Synthesis, modification, processing and applications”, Springer, Verlag.
  • 37. Rothon, R.N. (2003). Particulate-filled polymer composites”, 2nd Edition, Rapra Technology Limited, UK.
  • 38. Tayfun, U. 2006 “Effects of fillers on morphological, mechanical, flow and thermal properties of bituminous composites”, MSc Thesis, Middle East Technical University The Graduate School of Natural and Applied Sciences, Ankara, 54-62.
  • 39. Tayfun, U. and Dogan, M. 2016. ‘’Improvement the dyeability of poly(lactic acid) fiber using organoclay during melt spinning”, Polymer Bulletin, 73(6), 1581-1593. DOI: 10.1007/s00289-015-1564-4
  • 40. Tayfun, U., Dogan, M. and Bayramli, E. 2017. Polyurethane elastomer as a matrix material for short carbon fiber reinforced thermoplastics”, Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 18(3), 682-694. DOI: 10.18038/aubtda.271011
  • 41. Theberge, J.E. 1982. Mineral reinforced thermoplastic composites”, Journal of Elastomers & Plastics, 14(2), 100-108. DOI: 10.1177/009524438201400202
  • 42. Thio, Y.S., Argon, A.S. and Cohen, R.E. 2002. Toughening of isotactic polypropylene with CaCO3 particles”, Polymer, 43: 3661-3674. DOI: 10.1016/S0032-3861(02)00193-3
  • 43. Tian, H.Y. and Tagaya, H. 2007. Preparation, characterization and mechanical properties of the polylactide/perlite and the polylactide/montmorillonite composites”, Journal of Material Science, 42, 3244-3250. DOI: 10.1007/s10853-006-0230-5
  • 44. Turgut, G., Dogan, M. Tayfun, U. and Ozkoc, G. 2018. ‘’The effects of POSS particles on the flame retardancy of intumescent polypropylene composites and the structure-property relationship’’, Polymer Degradation and Stability, 149, 96-111. DOI: 10.1016/j.polymdegradstab.2018.01.025
  • 45. Vishu, S. (1998) “Handbook of Plastic Testing Technology’’, Second Edition, Wiley-Interscience Publication.
  • 46. Wake, W.C. (1971) “Fillers for Plastics’’, Iliffe for the Plastics Institute, London.
  • 47. Weber, C.J., Haugaard, V., Festersen, R. and Bertelsen, G. 2002. “Production and applications of biobased packaging materials for the food industry”, Food Additives & Contaminants, 19, 172-177.
  • 48. Xanthos, M. (2005). Functional fillers for plastics”, Wiley VCH, Weinheim.
  • 49. Yang, K., Yang, Q., Li, G., Sun, Y. and Feng, D., 2006. Morphology and mechanical properties of polypropylene/calcium carbonate nanocomposites”, Materials letters, 60(6), 805-809. DOI: 10.1002/app.10789
  • 50. Yıldızhan, Ş., Çalık, A., Özcanlı, M. and Serin, H. 2018. “Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications”, European Mechanical Science, 2(3), 83-91. DOI: 10.26701/ems.369005
  • 51. Zhitong, Y., Meisheng, X., Liugin, G., Tao, C., Haiyan, L. and Ying, Y. 2014. Mechanical and thermal properties of polypropylene (PP) composites filled with CaCO3 and shell-waste derived bio-fillers”, Fibers and Polymers, 15, 1278-1287. DOI: 10.1007/s12221-014-1278-5
  • 52. Zuiderduin, W.C.J., Westzaan, C., Huetink J. and Gaymans, R.J. 2003. Toughening of polypropylene with calcium carbonate particles”, Polymer, 44, 261–275. DOI: 10.1016/S0032-3861(02)00769-3
Birincil Dil en
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Orcid: 0000-0001-6214-6070
Yazar: Ali Sinan DİKE (Sorumlu Yazar)
Kurum: ADANA BİLİM VE TEKNOLOJİ ÜNİVERSİTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 20 Mart 2020

Bibtex @araştırma makalesi { erzifbed638547, journal = {Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi}, issn = {1307-9085}, eissn = {2149-4584}, address = {}, publisher = {Erzincan Üniversitesi}, year = {2020}, volume = {13}, pages = {162 - 170}, doi = {10.18185/erzifbed.638547}, title = {Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials}, key = {cite}, author = {DİKE, Ali Sinan} }
APA DİKE, A . (2020). Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi , 13 (1) , 162-170 . DOI: 10.18185/erzifbed.638547
MLA DİKE, A . "Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials". Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 13 (2020 ): 162-170 <https://dergipark.org.tr/tr/pub/erzifbed/issue/53239/638547>
Chicago DİKE, A . "Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials". Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 13 (2020 ): 162-170
RIS TY - JOUR T1 - Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials AU - Ali Sinan DİKE Y1 - 2020 PY - 2020 N1 - doi: 10.18185/erzifbed.638547 DO - 10.18185/erzifbed.638547 T2 - Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi JF - Journal JO - JOR SP - 162 EP - 170 VL - 13 IS - 1 SN - 1307-9085-2149-4584 M3 - doi: 10.18185/erzifbed.638547 UR - https://doi.org/10.18185/erzifbed.638547 Y2 - 2020 ER -
EndNote %0 Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials %A Ali Sinan DİKE %T Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials %D 2020 %J Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi %P 1307-9085-2149-4584 %V 13 %N 1 %R doi: 10.18185/erzifbed.638547 %U 10.18185/erzifbed.638547
ISNAD DİKE, Ali Sinan . "Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials". Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 13 / 1 (Mart 2020): 162-170 . https://doi.org/10.18185/erzifbed.638547
AMA DİKE A . Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2020; 13(1): 162-170.
Vancouver DİKE A . Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2020; 13(1): 170-162.