Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 13 Sayı: 3, 1334 - 1347, 31.12.2020
https://doi.org/10.18185/erzifbed.830799

Öz

Destekleyen Kurum

Çankırı Karatekin Üniversitesi

Proje Numarası

FF080120B01

Teşekkür

Çankırı Karatekin Üniversitesi, Çankırı Karatekin Üniversitesi BAP Koordinasyon Birimi

Kaynakça

  • Al-Odayni, A. B., Saeed, W. S., Ahmed, A. Y. B. H., Alrahlah, A., Al-Kahtani, A., and Aouak, T. 2020. “New Monomer Based on Eugenol Methacrylate, Synthesis, Polymerization and Copolymerization with Methyl Methacrylate–Characterization and Thermal Properties”, Polymers, 12, 160-188.
  • Bajpai, A. K., and Mishra, D. D. 2018. “Dynamics of blood proteins adsorption onto poly (2‐hydroxyethyl methacrylate)‐silica nanocomposites: Correlation with biocompatibility”. Journal of Applied Polymer Science, 107(1), 541-553.
  • Bezerra, D. P., Militão, G. C. G., Morais, M. C. and Sousa, D. P. 2017. “The Dual Antioxidant/Prooxidant Effect of Eugenol and Its Action in Cancer Development and Treatment”, Nutrients, 9, 1367.
  • Bilal, M., and Iqbal, H. M. N. 2019. “Marine Seaweed Polysaccharides-Based Engineered Cues for the Modern Biomedical Sector”, Marine Drugs, 18, 7.
  • Bilgiçli, H. G., Kestane, A., Taslimi, P., Karabay, O., Damoni, A. B., Zengin, M., and Gulçin, İ. 2019. “Novel eugenol bearing oxypropanolamines: Synthesis, characterization, antibacterial, antidiabetic, and anticholinergic potentials”, Bioorganic Chemistry, 88, 10293.
  • Choi, M. J., Soottitantawat, A., Nuchuchua, O., Min, S. G., and Ruktanonchai, U. 2009. “Physical and light oxidative properties of eugenol encapsulated by molecular inclusion and emulsion–diffusion Method”. Food Research International, 42(1), 148-156.
  • Costela, A., Florido, F., Garcia-Moreno, I., Duchowicz, R., Amat-Guerri, F., Figuera, J. M., and Sastre, R. 1995. “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G”, Applied Physics B, 60, 383–389.
  • Çekingen, S. K., Saltan, F., Yildirim, Y., and Akat, H. 2012. “A novel HEMA-derived monomer and copolymers containing side-chain thiophene units: Synthesis, characterization and thermal degradation kinetics”, Thermochimica Acta, 546, 87-93.
  • Çetin, D., Sera Kahraman, A., and Gümüsderelioglu, M. 2011. “Novel Scaffolds Based on Poly(2-hydroxyethyl methacrylate) Superporous Hydrogels for Bone Tissue Engineering” Journal of Biomaterials Science, 22, 1157–1178.
  • Dey, S., and Kar, A. K. 2019. “ Enhanced photoluminescence through Forster resonance energy transfer in Polypyrrole-PMMA blends for application in optoelectronic devices”, Materials Science in Semiconductor Processing, 103, 104644.
  • Gadhave, R. V., Mahanwar, P. A., and Gadekar, P. T. 2018. “Lignin-Polyurethane Based Biodegradable Foam”, Open Journal of Polymer Chemistry, 8, 1-10.
  • Hernández, E., Mosiewicki, M. A., and Marcovich, N. E. 2020. “Bio-Based Polymers Obtained from Modified Fatty Acids and Soybean Oil with Tailorable Physical and Mechanical Performance”, European Journal Lipid Science and Technology, 122, 2000182.
  • Huang, W., Hu, X., Zhai, J., Zhu, N., and Guo, K. 2020. “Biorenewable furan-containing polyamides”, Materials Today Sustainability, 10, 100049.
  • Ilyas, R. A., Sapuan, S. M. Ishak, M. R. Zainudin, E. S., and Atikah, M. S. N. 2018. “Characterization of Sugar Palm Nanocellulose and Its Potential for Reinforcement with a Starch-Based Composite”, Sugar Palm Biofibers, Biopolymers, & Biocomposites, Taylor and Francis, England, 189-219.
  • Jiang, W., Sun, Y., Xu, Y., Peng, C., Gong, X., and Zhang, Z. 2010. “Shear-thickening behavior of polymethylmethacrylate particles suspensions in glycerine–water mixtures”, Rheol Acta, 49, 1157–1163.
  • Lligadas, G., Ronda, J. C., Galia, M., and Ca´diz, V. 2013. “Renewable polymeric materials from vegetable oils: a perspective”, Materials Today, 16(9), 337-343.
  • Lu, Y., and Larock R. C. 2009. “Novel Polymeric Materials from Vegetable Oils and Vinyl Monomers: Preparation, Properties, and Applications”, ChemSusChem, 2, 136–147.
  • Maccelli, A., Vitanza, L., Imbriano, A., Fraschetti, C., Filippi, A., Goldoni, P., Maurizi, L., Ammendolia, M. G., Crestoni, M. E., Fornarini, S., Menghini, L., Carafa, M., Marianecci, C., Longhi, C., and Rinaldi, F. 2019. “Satureja montana L. Essential Oils: Chemical Profiles/Phytochemical Screening, Antimicrobial Activity and O/WNanoEmulsion Formulations”, Pharmaceutics, 12, 7.
  • Mackova, H., Plichta, Z, Hlidkova, H., Sedlacek, O., Konefal, R., Sadakbayeva, Z., Smrckova, M. D., Horák, D., and Kubinova, S. 2017. “Reductively degradable poly(2-hydroxyethyl methacrylate) hydrogels with oriented porosity for tissue engineering applications”, ACS Applied Materials and Interfaces, 9(12), 10544–10553.
  • Magalhães, C. B., Casquilho, N. V., Machado, M. N., Riva, D. R., Travassos, L. H., Cardoso, J. H. L., Fortunato, R. S., Faffe, D. S., and Zin, W. A. 2019. “The anti-inflammatory and anti-oxidative actions of eugenol improve lipopolysaccharide-induced lung injury”, Respiratory Physiology & Neurobiology, 259, 30–36.
  • Marchese, A., Barbieri, R., Coppo, E., Orhan, I. E., Daglia, M., Nabavi, S. F., Izadi, M., Abdollahi, M., Nabavi, S. M., and Ajami, M. 2017. “Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint”, Critical Reviews in Microbiology, 43(6), 668-689.
  • Mateen, S., Rehman, M. T., Shahzad, S., Naeem, S. S., Faizy, A. F., Khand, A. Q., Khan, M. S., Husain, F. M., and Moin, S. 2019. “Anti-oxidant and anti-inflammatory effects of cinnamaldehyde and Eugenol on mononuclear cells of rheumatoid arthritis patients”, European Journal of Pharmacology, 852, 14–24.
  • Miranda, K. A. G., Rivas, B. L., Rivera, M. A. P., Sanfuentes, E. A., and Farfal, C. P. 2018. “ Antioxidant and antifungal effects of eugenol incorporated in bionanocomposites of poly(3-hydroxybutyrate)-thermoplastic starch”, LWT-Food Science and Technology, 98, 260–267.
  • Neuta, D., Belta, H., Stokroos, I., Horn, J. R., Mei, H. C., and Busscher, H. J. 2001. “Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery”, Journal of Antimicrobial Chemotherapy, 47, 885–891.
  • Olea, A. F., Bravo, A., Martínez, R., Thomas, M., Sedan, C., Espinoza, L., Zambrano, E., Carvajal, D., Moreno, E. S., and Carrasco, H. 2019. “Antifungal Activity of Eugenol Derivatives against Botrytis Cinerea”, Molecules, 24, 1239.
  • Proulx, F. T., Beaulieu, L., Archambault, L., and Beddar, S. 2013. “On the nature of the light produced within PMMA optical light guides in scintillation fiber-optic dosimetry”, Physics in Medicine & Biology, 58, 2073.
  • Rojo, L., Barcenilla, J, M., Vazquez, B., Gonzalez, R., and Roman, J. S. 2008. “Intrinsically Antibacterial Materials Based on Polymeric Derivatives of Eugenol for Biomedical Applications”, Biomacromolecules, 9, 2530–2535.
  • Santos, R. R., Andrade, M., Melo, N. R., and Silva, A S. 2017. “Use of essential oils in active food packaging: Recent advances and future trends”, Trends in Food Science & Technology, 61, 132-140.
  • Sarkic, A., and Stappen, I. 2018. “Essential Oils and Their Single Compounds in Cosmetics-A Critical Review”, Cosmetics, 5, 11.
  • Simoes, M.G., Coimbra, P., Carreira, A. S., Figueiredo, M. M., Gil, M. H., and Simoes, P. N. 2020. “Eugenol-loaded microspheres incorporated into textile substrates”, Cellulose, 27, 4109–4121.
  • Vargün, E., Sankir, M., Aran, B., Sankir, N. D., and Usanmaz, A. 2010. “Nanotechnology and Membrane Synthesis and Characterization of 2-Hydroxyethyl Methacrylate (HEMA) and Methyl Methacrylate (MMA) Copolymer Used as Biomaterial”, Journal of Macromolecular Science, Part A, 47(3), 235-240.
  • Xia, Y., Quirino, R. L., and Larock, R. C. 2013. “Bio-based Thermosetting Polymers from Vegetable Oils”, Journal of Renewable. Materials, 1(1), 3-27.
  • Xu, H., Zhang, D., and Li, J. 2019. “Antibacterial Nanoparticles with Universal Adhesion Function Based on Dopamine and Eugenol”, Journal of Bioresources and Bioproducts, 4(3), 177–182.
  • Zhang, C., and Kessler, M. R. 2015. “Bio-based Polyurethane Foam Made from Compatible Blends of Vegetable-Oil-based Polyol and Petroleum-based Polyol”, ACS Sustainable Chemistry and Engineering, 3, 743−749.
  • Zhang, L., Zheng, G. J., Guo, Y. T., Zhou, L., Du, J., and He, H. 2014. “Preparation of novel biodegradable pHEMA hydrogel for a tissue engineering scaffold by microwave-assisted polymerization”, Asian Pacific Journal of Tropical Medicine, 7(2), 136-140.
  • Zhang, X., Akram, R., Zhang, S., Ma, H., Wu, Z., and Wu, D. 2017. “Hexa(eugenol) cyclotriphosphazene modified bismaleimide resins with unique thermal stability and flame retardancy”, Reactive and Functional Polymers, 113, 77-87

Synthesis of Novel Type Terpolymer Poly(Eugenol-co-methylmethacrylate-co-hydroxyethylmethacrylate) Using Photopolymerization Method: Characterization and Investigation of Thermal Properties

Yıl 2020, Cilt: 13 Sayı: 3, 1334 - 1347, 31.12.2020
https://doi.org/10.18185/erzifbed.830799

Öz

In this study, it has been demonstrated that Poly(Eugenol-co-methylmethacrylate-co-hydroxyethylmethacrylate) terpolymers were successfully synthesized by using photopolymerization method. This synthesis was carried out in one step at ambient temperature, benzophenone and triethyl amine was used as the photoinitiator and hydrogen donor, respectively. Methyl methacrylate (MMA), 2-Hydroxyethyl methacrylate (HEMA) and Eugenol (Eg) were used as monomer in photopolymerization. Terpolymers are named as F-BAP1, F-BAP2, F-BAP3 and F-BAP4 according to the ratio of monomers used. Structural characterization and thermal properties of the synthesized terpolymers were carried out by FTIR (Fourier-transform infrared spectroscopy), 1H-NMR (Nuclear magnetic resonance spectroscopy), TG-DTG (Thermogravimetry-Differential Thermogravimetry) and DSC (Differential scanning calorimetry) methods. Characterization of molecular weight distributions were determined by viscometric method. SEM (Scanning electron microscope) was used for surface analysis. According to the data obtained from thermal analysis, two degradation steps are seen in thermograms of the terpolymers except FBAP-2. The maximum degradation temperature of F-BAP 2 is 422 oC, the first degradation temperature of the other terpolymers between 250-280 oC and the second one between 421-427 oC.

Proje Numarası

FF080120B01

Kaynakça

  • Al-Odayni, A. B., Saeed, W. S., Ahmed, A. Y. B. H., Alrahlah, A., Al-Kahtani, A., and Aouak, T. 2020. “New Monomer Based on Eugenol Methacrylate, Synthesis, Polymerization and Copolymerization with Methyl Methacrylate–Characterization and Thermal Properties”, Polymers, 12, 160-188.
  • Bajpai, A. K., and Mishra, D. D. 2018. “Dynamics of blood proteins adsorption onto poly (2‐hydroxyethyl methacrylate)‐silica nanocomposites: Correlation with biocompatibility”. Journal of Applied Polymer Science, 107(1), 541-553.
  • Bezerra, D. P., Militão, G. C. G., Morais, M. C. and Sousa, D. P. 2017. “The Dual Antioxidant/Prooxidant Effect of Eugenol and Its Action in Cancer Development and Treatment”, Nutrients, 9, 1367.
  • Bilal, M., and Iqbal, H. M. N. 2019. “Marine Seaweed Polysaccharides-Based Engineered Cues for the Modern Biomedical Sector”, Marine Drugs, 18, 7.
  • Bilgiçli, H. G., Kestane, A., Taslimi, P., Karabay, O., Damoni, A. B., Zengin, M., and Gulçin, İ. 2019. “Novel eugenol bearing oxypropanolamines: Synthesis, characterization, antibacterial, antidiabetic, and anticholinergic potentials”, Bioorganic Chemistry, 88, 10293.
  • Choi, M. J., Soottitantawat, A., Nuchuchua, O., Min, S. G., and Ruktanonchai, U. 2009. “Physical and light oxidative properties of eugenol encapsulated by molecular inclusion and emulsion–diffusion Method”. Food Research International, 42(1), 148-156.
  • Costela, A., Florido, F., Garcia-Moreno, I., Duchowicz, R., Amat-Guerri, F., Figuera, J. M., and Sastre, R. 1995. “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G”, Applied Physics B, 60, 383–389.
  • Çekingen, S. K., Saltan, F., Yildirim, Y., and Akat, H. 2012. “A novel HEMA-derived monomer and copolymers containing side-chain thiophene units: Synthesis, characterization and thermal degradation kinetics”, Thermochimica Acta, 546, 87-93.
  • Çetin, D., Sera Kahraman, A., and Gümüsderelioglu, M. 2011. “Novel Scaffolds Based on Poly(2-hydroxyethyl methacrylate) Superporous Hydrogels for Bone Tissue Engineering” Journal of Biomaterials Science, 22, 1157–1178.
  • Dey, S., and Kar, A. K. 2019. “ Enhanced photoluminescence through Forster resonance energy transfer in Polypyrrole-PMMA blends for application in optoelectronic devices”, Materials Science in Semiconductor Processing, 103, 104644.
  • Gadhave, R. V., Mahanwar, P. A., and Gadekar, P. T. 2018. “Lignin-Polyurethane Based Biodegradable Foam”, Open Journal of Polymer Chemistry, 8, 1-10.
  • Hernández, E., Mosiewicki, M. A., and Marcovich, N. E. 2020. “Bio-Based Polymers Obtained from Modified Fatty Acids and Soybean Oil with Tailorable Physical and Mechanical Performance”, European Journal Lipid Science and Technology, 122, 2000182.
  • Huang, W., Hu, X., Zhai, J., Zhu, N., and Guo, K. 2020. “Biorenewable furan-containing polyamides”, Materials Today Sustainability, 10, 100049.
  • Ilyas, R. A., Sapuan, S. M. Ishak, M. R. Zainudin, E. S., and Atikah, M. S. N. 2018. “Characterization of Sugar Palm Nanocellulose and Its Potential for Reinforcement with a Starch-Based Composite”, Sugar Palm Biofibers, Biopolymers, & Biocomposites, Taylor and Francis, England, 189-219.
  • Jiang, W., Sun, Y., Xu, Y., Peng, C., Gong, X., and Zhang, Z. 2010. “Shear-thickening behavior of polymethylmethacrylate particles suspensions in glycerine–water mixtures”, Rheol Acta, 49, 1157–1163.
  • Lligadas, G., Ronda, J. C., Galia, M., and Ca´diz, V. 2013. “Renewable polymeric materials from vegetable oils: a perspective”, Materials Today, 16(9), 337-343.
  • Lu, Y., and Larock R. C. 2009. “Novel Polymeric Materials from Vegetable Oils and Vinyl Monomers: Preparation, Properties, and Applications”, ChemSusChem, 2, 136–147.
  • Maccelli, A., Vitanza, L., Imbriano, A., Fraschetti, C., Filippi, A., Goldoni, P., Maurizi, L., Ammendolia, M. G., Crestoni, M. E., Fornarini, S., Menghini, L., Carafa, M., Marianecci, C., Longhi, C., and Rinaldi, F. 2019. “Satureja montana L. Essential Oils: Chemical Profiles/Phytochemical Screening, Antimicrobial Activity and O/WNanoEmulsion Formulations”, Pharmaceutics, 12, 7.
  • Mackova, H., Plichta, Z, Hlidkova, H., Sedlacek, O., Konefal, R., Sadakbayeva, Z., Smrckova, M. D., Horák, D., and Kubinova, S. 2017. “Reductively degradable poly(2-hydroxyethyl methacrylate) hydrogels with oriented porosity for tissue engineering applications”, ACS Applied Materials and Interfaces, 9(12), 10544–10553.
  • Magalhães, C. B., Casquilho, N. V., Machado, M. N., Riva, D. R., Travassos, L. H., Cardoso, J. H. L., Fortunato, R. S., Faffe, D. S., and Zin, W. A. 2019. “The anti-inflammatory and anti-oxidative actions of eugenol improve lipopolysaccharide-induced lung injury”, Respiratory Physiology & Neurobiology, 259, 30–36.
  • Marchese, A., Barbieri, R., Coppo, E., Orhan, I. E., Daglia, M., Nabavi, S. F., Izadi, M., Abdollahi, M., Nabavi, S. M., and Ajami, M. 2017. “Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint”, Critical Reviews in Microbiology, 43(6), 668-689.
  • Mateen, S., Rehman, M. T., Shahzad, S., Naeem, S. S., Faizy, A. F., Khand, A. Q., Khan, M. S., Husain, F. M., and Moin, S. 2019. “Anti-oxidant and anti-inflammatory effects of cinnamaldehyde and Eugenol on mononuclear cells of rheumatoid arthritis patients”, European Journal of Pharmacology, 852, 14–24.
  • Miranda, K. A. G., Rivas, B. L., Rivera, M. A. P., Sanfuentes, E. A., and Farfal, C. P. 2018. “ Antioxidant and antifungal effects of eugenol incorporated in bionanocomposites of poly(3-hydroxybutyrate)-thermoplastic starch”, LWT-Food Science and Technology, 98, 260–267.
  • Neuta, D., Belta, H., Stokroos, I., Horn, J. R., Mei, H. C., and Busscher, H. J. 2001. “Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery”, Journal of Antimicrobial Chemotherapy, 47, 885–891.
  • Olea, A. F., Bravo, A., Martínez, R., Thomas, M., Sedan, C., Espinoza, L., Zambrano, E., Carvajal, D., Moreno, E. S., and Carrasco, H. 2019. “Antifungal Activity of Eugenol Derivatives against Botrytis Cinerea”, Molecules, 24, 1239.
  • Proulx, F. T., Beaulieu, L., Archambault, L., and Beddar, S. 2013. “On the nature of the light produced within PMMA optical light guides in scintillation fiber-optic dosimetry”, Physics in Medicine & Biology, 58, 2073.
  • Rojo, L., Barcenilla, J, M., Vazquez, B., Gonzalez, R., and Roman, J. S. 2008. “Intrinsically Antibacterial Materials Based on Polymeric Derivatives of Eugenol for Biomedical Applications”, Biomacromolecules, 9, 2530–2535.
  • Santos, R. R., Andrade, M., Melo, N. R., and Silva, A S. 2017. “Use of essential oils in active food packaging: Recent advances and future trends”, Trends in Food Science & Technology, 61, 132-140.
  • Sarkic, A., and Stappen, I. 2018. “Essential Oils and Their Single Compounds in Cosmetics-A Critical Review”, Cosmetics, 5, 11.
  • Simoes, M.G., Coimbra, P., Carreira, A. S., Figueiredo, M. M., Gil, M. H., and Simoes, P. N. 2020. “Eugenol-loaded microspheres incorporated into textile substrates”, Cellulose, 27, 4109–4121.
  • Vargün, E., Sankir, M., Aran, B., Sankir, N. D., and Usanmaz, A. 2010. “Nanotechnology and Membrane Synthesis and Characterization of 2-Hydroxyethyl Methacrylate (HEMA) and Methyl Methacrylate (MMA) Copolymer Used as Biomaterial”, Journal of Macromolecular Science, Part A, 47(3), 235-240.
  • Xia, Y., Quirino, R. L., and Larock, R. C. 2013. “Bio-based Thermosetting Polymers from Vegetable Oils”, Journal of Renewable. Materials, 1(1), 3-27.
  • Xu, H., Zhang, D., and Li, J. 2019. “Antibacterial Nanoparticles with Universal Adhesion Function Based on Dopamine and Eugenol”, Journal of Bioresources and Bioproducts, 4(3), 177–182.
  • Zhang, C., and Kessler, M. R. 2015. “Bio-based Polyurethane Foam Made from Compatible Blends of Vegetable-Oil-based Polyol and Petroleum-based Polyol”, ACS Sustainable Chemistry and Engineering, 3, 743−749.
  • Zhang, L., Zheng, G. J., Guo, Y. T., Zhou, L., Du, J., and He, H. 2014. “Preparation of novel biodegradable pHEMA hydrogel for a tissue engineering scaffold by microwave-assisted polymerization”, Asian Pacific Journal of Tropical Medicine, 7(2), 136-140.
  • Zhang, X., Akram, R., Zhang, S., Ma, H., Wu, Z., and Wu, D. 2017. “Hexa(eugenol) cyclotriphosphazene modified bismaleimide resins with unique thermal stability and flame retardancy”, Reactive and Functional Polymers, 113, 77-87
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Fehmi Saltan 0000-0002-9347-6416

Proje Numarası FF080120B01
Yayımlanma Tarihi 31 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 13 Sayı: 3

Kaynak Göster

APA Saltan, F. (2020). Synthesis of Novel Type Terpolymer Poly(Eugenol-co-methylmethacrylate-co-hydroxyethylmethacrylate) Using Photopolymerization Method: Characterization and Investigation of Thermal Properties. Erzincan University Journal of Science and Technology, 13(3), 1334-1347. https://doi.org/10.18185/erzifbed.830799