Chamotte Clay: A Natural Adsorbent for Separation and Preconcentration of Aluminium
Yıl 2023,
Cilt: 16 Sayı: 1, 28 - 48, 31.03.2023
Raif Ilktac
Öz
The adsorption behavior of aluminium ions on chamotte clay has been studied in this study. Chamotte clay has been used for the first time for determination of trace levels of aluminium in aqueous solutions. Quantitative adsorption and recovery of aluminium were both rapid and reached an equilibrium in 30 minutes. Aluminium was detected based on the formation of the highly fluorescent Al(III)-morin complex. Two linear calibration graphs were obtained in the range of 0.5-10 µg L-1 and 10-100 µg L-1 with the detection limits of 0.12 µg L-1 and 1.12 µg L-1, respectively. Chamotte clay was characterized by scanning electron microscope coupled with energy-dispersive X-ray spectroscopy, energy dispersive X-ray fluorescence and X-ray photoelectron spectroscopy techniques. Different isotherm models were evaluated and the results showed that the adsorption study was fitted to Freundlich isotherm and a favorable and multilayer adsorption of aluminium was occurred on the heterogeneous surface of the chamotte clay. Thermodynamic and kinetic parameters of aluminium adsorption were also investigated. Various experimental parameters were optimized and the method has been applied to tap and bottled drinking water samples and quantitative recoveries were obtained. The results demonstrated that the chamotte clay, as a natural clay, was expected to be a promising adsorbent for the determination and preconcentration of the trace levels of analyte in real samples.
Teşekkür
The author would like to thank Dr. Ece Bayır for her great support and valuable comments on this paper.
Kaynakça
- Arunakumara, K. K. I. U. Walpola, B. C. Yoon, M. H. 2013. “Aluminum toxicity and tolerance mechanism in cereals and legumes – a review”, J. Korean Soc. Appl. Biol. Chem. 56: 1−9.
- Sidqi, M. E. Aziz, A. A. A. Abolehasan, A. E. Sayed, M. A. 2022. “Photochemical processing potential of a novel Schiff base as a fluorescent probe for selective monitoring of Al3+ ions and bioimaging in human cervical cancer HeLa cells”, J. Photochem. Photobiol. 424: 113616.
- Gupta, V. K. Shoora, S. K. Kumawat, L. K. Jain, A. K. 2015. “A highly selective colorimetric and turn-on fluorescent chemosensorbased on 1-(2-pyridylazo)-2-naphthol for the detection ofaluminium(III) ions”, Sens. Actuators B Chem. 209: 15-24.
- Abbaspour, A. Refahi, M. Khalafinezhad, A. Rad, M. N. S. Behrouz, S. 2010. “A selective and sensitive carbon composite coated platinum electrode for aluminium determination in pharmaceutical and mineral water samples”, Anal. Chim. Acta. 662: 76–81.
- Loeschner, K. Correia, M. Chaves, C. L. Rokkjær, I. Sloth, J. J. 2018. “Detection and characterisation of aluminiumcontaining nanoparticles in Chinese noodles by single particle ICP-MS”, Food Addit.Contam. Part A 35: 6-93.
- WHO, 2011. “Aluminium, guidelines for drinking water quality”, 4th ed., World Health Organization, Geneva.
- Kejík, Z. Kapláne, R. Havlík, M. Bříza, T. Vavřinová, D. Dolenský, B. Martásek, P. Král, V. 2016. “Aluminium(III) sensing by pyridoxal hydrazone utilising the chelation enhanced fluorescence effect”, J. Lumin. 180: 269-277.
- Ying, K. S. Heng, L. Y. Hassan, N. I. Hasbullah, S. A. 2020. “A new and all-solid-state potentiometric aluminium ion sensor for water analysis”, Sensors. 20: 6898.
- Suherman, A. L. Tanner, E. E. L. Kuss, S. Sokolov, S. V. Holter, J. Young, N. P. Compton, R. G. 2018. “Voltammetric determination of aluminium(III) at tannic acidcapped-gold nanoparticle modified electrodes”, Sens. Actuators B Chem. 265: 682-690.
- Youssef, H. M. Azzam, M. A. 2021 “Efficient removal of aluminium(III) from aqueous solutions via ion-flotation technique using aluminon as a chelating agent and oleic acid as a surfactant”, Int. J. Environ. Anal. Chem. 1-18.
- Shirkhanloo, H. Abbasabadi, M. K. Hosseini, F. Zarandi, A. F. 2021. “Nanographene oxide modified phenyl methanethiol nanomagnetic composite for rapid separation of aluminum in wastewaters, foods, and vegetable samples by microwave dispersive magnetic micro solid-phase extraction”, Food Chem. 347: 129042.
- Komarek, J. Cervenka, R. Ruzicka, T. Kuban, T. 2007. “ET-AAS determination of aluminium in dialysis concentrates after continuous flow solvent extraction”, J. Pharmaceut. Biomed. 45: 504-509.
- Eroglu, E. I. Gulec, A. Ayaz, A. 2018. “Determination of aluminium leaching into various baked meats with different types of foils by ICP-MS”, J. Food Process. Preserv. 42: e13771.
- Samarina, T. O. Volkov, D. S. Mikheev, I. V. Proskurnin, M. A. 2018. “High-sensitivity and high-performance determination of trace aluminum in water for pharmaceutical purposes by microwave plasma and inductively coupled plasma–atomic emission spectrometry”, Anal. Lett. 51: 659-672.
- Thomas, S. D. Davey, D. E. Mulcahy, D. E. Chow, C. W. K. 2005. “Indirect amperometric detection of aluminium by flow ınjection analysis using DASA as ligand”, Anal. Lett. 38: 133-147.
- Elečková, L. Alexovič, M. Kuchár, J. Balogh, I. S. Andruch, V. 2015. “Visual detection and sequential injection determination of aluminium using acinnamoyl derivative”, Talanta. 133: 27-33.
- Anwar, Z. M. Ibrahim, I. A. Kamel, R. M. Salam, E. T. A. Asfoury, M. H. E. 2018. “New highly sensitive and selective fluorescent terbium complex for the detection of aluminium ions”, J. Mol. Struct. 1154: 272-279.
- Kamel, R. M. Sakka, S. S. E. Bahgat, K. Monir, M. R. Soliman, M. H. A. 2021. “New turn on fluorimetric sensor for direct detection of ultra-trace ferric ions in industrial wastewater and its application by test strips”, J. Photochem. Photobiol. 411: 113218.
- Pomal, N. C. Bhatt, K. D. Modi, K. M. Desai, A. L. Patel, N. P. Kongor, A. Kolivoška, V. 2021. “Functionalized silver nanoparticles as colorimetric and fluorimetric sensor for environmentally toxic mercury ions: an overview”, J. Fluoresc. 31: 635–649.
- Renedo, O. D. Cuñado, A. M. N. Romaya, E. V. Lomillo, M. A. A. 2019. “Determination of aluminium using different techniques based on the Al(III)-morin complex”, Talanta. 196: 131-136.
- Mateos, A. A. Parra, M. J. A. Serrano, Y. C. Martín, F. J. R. 2008. “Online monitoring of aluminium in drinking water with fluorimetric detection”, J. Fluoresc. 18: 183-192.
- Chu, F. Han, P. Feng, S. Wei, S. Ma, H. Bian, Z. 2021. “Hydrogel optical fibers functionalized with lumogallion as aluminum ions sensing platform”, Optik. 240: 166875.
- Yamaguchi, S. Matusi, K. 2016. “Formation and entrapment of tris(8-hydroxyquinoline)aluminum from 8-hydroxyquinoline in anodic porous alumina”, Materials. 9: 715.
- Peng, H. Han, Y. Lin, N. Liu, H. 2019. “Two pyridine-derived Schiff-bases as turn-on fluorescent sensor for detection of aluminium ion”, Opt. Mater. 95: 109210.
- Samanta, S. Nath, B. Baruah, J. B. 2012. “Hydrolytically stable Schiff base as highly sensitive aluminium sensor”, Inorg. Chem. Commun. 22: 98-100.
- Kayan, A. 2019. “Inorganic-organic hybrid materials and their adsorbent properties”, Adv. Compos. Mater. 2: 34-45.
- Yu, J. G. Yu, L. Y. Yang, H. Liu, Q. Chen, X. H. Jiang, X. Y. Chen, X. Q. Jiao, F. P. 2015. “Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions”, Sci. Total Environ. 502: 70-79.
- Ray, P. Z. Shipley, H. J. 2015. “Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review”, RSC Adv. 5: 29885.
- Usman, M. Ahmed, A. Yu, B. Wang, S. Shen, Y. Cong, H. 2021. “Simultaneous adsorption of heavy metals and organic dyes by β-cyclodextrin-chitosan based cross-linked adsorbent”, Carbohydr. Polym. 255: 117486.
- Chakraborty, R. Asthana, A. Singh, A. K. Jain, B. Susan, A. B. H. 2022. “Adsorption of heavy metal ions by various low-cost adsorbents: a review”, Int. J. Environ. Anal. Chem. 102: 342-379.
- Sdiri, A. T. Higashi, T. Jamoussi, F. 2014. “Adsorption of copper and zinc onto natural clay in single and binary systems”, Int. J. Environ. Sci. Technol. 11: 1081-1092.
- Gu, S. Kang, X. Wang, L. Lichtfouse, E. Wang, C. 2019. “Clay mineral adsorbents for heavy metal removal from wastewater: a review”, Environ. Chem. Lett. 17: 629-654.
- Doi, A. Khosravi, M. Ejtemaei, M. Nguyen, T. A. H. Nguyen, A. V. 2020. “Specificity and affinity of multivalent ions adsorption to kaolinite surface”, Appl. Clay Sci. 190: 105557.
- Fijałkowska, G. Wiśniewska, M. Karpisz, K. S. 2020. “Adsorption and electrokinetic studies in kaolinite/anionic polyacrylamide/chromate ions system”, Colloids Surf. A Physicochem. Eng. Asp. 603: 125232.
- Ijagbemi, C. O. Baek, M. H. Kim, D. S. 2009. “Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions”, J. Hazard. Mater. 1: 538-546.
- Akpomie, K. G. Dawodu, F. A. 2016. “Acid-modified montmorillonite for sorption of heavy metals from automobile effluent”, Beni-Seuf Univ. J. Appl. 1: 1-16.
- Brião, G. D. V. Silva, M. G. C. D. Vieira, M. G. A. 2021. “Efficient and selective adsorption of neodymium on expanded vermiculite”, Ind. Eng. Chem. Res. 60: 4962-4974.
- Manohar, D. M. Noeline, B. F. Anirudhan, T. S. 2006. “Adsorption performance of Al-pillared bentonite clay for the removal of cobalt(II) from aqueous phase” Appl. Clay Sci. 31: 194-206.
- Bertagnolli, C. Kleinübing, S. J. Silva, M. G. C. D. 2011. “Preparation and characterization of a Brazilian bentonite clay for removal of copper in porous beds”, Appl. Clay Sci. 53: 73-79.
- Santos, F. D. Conceição, L. R. V. D. Ceron, A. Castro, H. F. D. 2017. Chamotte clay as potential low cost adsorbent to be used in the palm kernel biodiesel purification”, Appl. Clay Sci. 149: 41-50.
- Rakhym, A. B. Seilkhanova, G. A. Kurmanbayeva, T. S. 2020. “Adsorption of lead (II) ions from water solutions with natural zeolite and chamotte clay”, Mater. Today: Proc. 31: 482-485.
- Nita, C. Fullenwarth, J. Monconduit, L. Meins, J. M. L. Fioux, P. Parmentier, J. Ghimbeu, C. M. 2019. “Eco-friendly synthesis of SiO2 nanoparticles confined in hard carbon: a promising material with unexpected mechanism for Li-ion batteries”, Carbon. 143: 598-609.
- Zhang, Z. Moghaddam, L. O’Hara, I. M. Doherty, W. O. S. 2011. “Congo red adsorption by ball-milled sugarcane bagasse”, Chem. Eng. J. 178: 122-128.
- Fiol, N. Villaescusa, I. 2009. “Determination of sorbent point zero charge: usefulness in sorption studies”, Environ. Chem. Lett. 7: 79–84.
- Kragović, M. Stojmenović, M. Petrović, J. Loredo, J. Pašalić, S. Nedeljković, A. Ristović, I. 2019. “Influence of alginate encapsulation on point of zero charge (pHpzc) and thermodynamic properties of the natural and Fe(III) - modified zeolite”, Procedia Manuf. 32: 286-293.
- Syafiqah, M. S. I. Yussof, H. W. 2018. “Kinetics, isotherms, and thermodynamic studies on the adsorption of mercury (II) ion from aqueous solution using modified palm oil fuel ash”, Mater. Today Proc. 5: 21690–21697.
- Ayawei, N. Ebelegi, A. N. Wankasi, D. 2017. “Modelling and interpretation of adsorption isotherms”, J. Chem. 1-11.
Wang, J. Liu, G. Li, T. Zhou, C. 2015. “Physicochemical studies toward the removal of Zn(II) and Pb(1 II) ions through adsorption on montmorillonite-supported zero-valent iron nanoparticles”, RSC Adv. 5: 29859-29871.
- Gai, W. Z. Deng, Z. Y. Shi, Y. 2015. “Fluoride removal from water using high-activity aluminum hydroxide prepared by the ultrasonic method”, RSC Adv. 5: 84223-84231.
- Rajahmundry, G. K. Garlapati, C. Kumar, P. S. Alwi, R. S. Vod, D. V. N. 2021. “Statistical analysis of adsorption isotherm models and its appropriate selection”, Chemosphere. 276: 130176.
- Nnaji, C. C. Agim, A. E. Mama, C. N. Emenike, P. G. C. Ogarekpe, N. M. 2021. “Equilibrium and thermodynamic investigation of biosorption of nickel from water by activated carbon made from palm kernel chaff”, Sci. Rep. 11: 7808.
- Roby, R. B. Gagnon, J. Deschênes, J. S. Chabot, B. 2018. “Development and treatment procedure of arsenic-contaminated water using a new and green chitosan sorbent: kinetic, isotherm, thermodynamic and dynamic studies”, Pure Appl. Chem. 90: 63-77.
- Hameed, B. M. 2009. “Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions”, J. Hazard. Mater. 161: 753-759
- Fei, F. Gao, Z. Wu, H. Wurendaodi, W. Zhao, S. Asuha, S. 2020. “Facile solid-state synthesis of Fe3O4/kaolinite nanocomposites for enhanced dye adsorption”, J. Solid State Chem. 291: 121655.
- Kassimi, A. E. Achour, Y. Himri, M. E. Laamari, M. Haddad, M. E. 2021. “High efficiency of natural safiot clay to remove industrial dyes from aqueous media: kinetic, isotherm adsorption and thermodynamic studies”, Biointerface Res. Appl. Chem. 11: 12717-12731.
- Shafey, E. S. I. E. Lawati, H. A. Sumri, A. S. A. 2012. “Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets”, J. Environ. Sci. 24: 1579-1586.
- Alorabi, A. Q. Hassan, M. S. Alam, M. M. Zabin, S. A. Alsenani, N. I. Baghdadi, N. E. 2021. “Natural clay as a low-cost adsorbent for crystal violet dye removal and antimicrobial activity”, Nanomaterials. 11: 2789.
- Okorie, H. O. C. Ekemezie, P. N. Akpomie, K. G. Olikagu, C. S. 2018. “Calcined corncob-kaolinite combo as new sorbent for sequestration of toxic metal ions from polluted aqua media and desorption”, Front. Chem. 6: 273.
- Akinbulumo, O. A. Odejobi, O. J. Odekanle, E. L. 2020. “Thermodynamics and adsorption study of the corrosion inhibition of mild steel by Euphorbia heterophylla L. extract in 1.5 M HCl” Results Mat. 5: 10074.
- Ramesh, A. Lee, D. J. Wong, J. W. C. 2005. “Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewater with low-cost adsorbents”, J. Colloid Interface Sci. 291: 588–592
- Shukla, S. K. Ebenso, E. E. 2011. “Corrosion inhibition, adsorption behavior and thermodynamic properties of streptomycin on mild steel in hydrochloric acid medium”, Int. J. Electrochem. Sci. 6: 3277-3291.
- Sahmoune, M. N. 2019. “Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents”, Environ. Chem. Lett. 17: 697-704
- Chen, L. Liu, J. Zeng, Q. Wang, H. Yu, A. Zhang, H. Ding, L. 2009. “Preparation of magnetic molecularly imprinted polymer for the separation of tetracycline antibiotics from egg and tissue samples”, J. Chromatogr. A. 1216: 3710–3719
- Wang, J. Pan, J. Yin, Y. Wu, R. Dai, X. Dai, J. Gao, L. Ou, H. 2015. “Thermo-responsive and magnetic molecularly imprinted Fe3O4@ carbon nanospheres for selective adsorption and controlled release of 2,4,5-trichlorophenol”, J. Ind. Eng. Chem. 25: 321–328
- Rekhi, H. Kaur, R. Rani, S. Malik, A. K. Kabir, A. K. G. 2018. “Direct rapid determination of trace aluminum in various water samples with quercetin by reverse phase high-performance liquid chromatography based on fabric phase sorptive extraction technique”, J. Chromatogr. Sci. 56: 452-460
- Bulut, V. N. Arslan, D. Ozdes, D. Soylak, M. Tufekci, M. 2010. “Preconcentration, separation and spectrophotometric determination of aluminium(III) in water samples and dialysis concentrates at trace levels with 8-hydroxyquinoline–cobalt(II) coprecipitation system”, J. Hazard. Mater. 182: 331-336