Araştırma Makalesi
BibTex RIS Kaynak Göster

Biosynthesis of Zirconium dioxide nanoparticles by Streptomyces sp. HC1: Characterization and Bioactivity

Yıl 2023, Cilt: 16 Sayı: 1, 224 - 238, 31.03.2023
https://doi.org/10.18185/erzifbed.1174027

Öz

Nanoparticles can be synthesized in many different ways. However, synthesis methods that are except of biosynthesis are very expensive and environmentally hazardous processes. Nanoparticles with various morphologies and shapes are frequently used in biosynthesis studies due to the advantages of their small size. Bio-synthesized nanoparticles gain great importance for reasons such as prevention of environmental pollution and being economical. Zirconium dioxide nanoparticles(ZrO2 NPs) are prominent especially in dental coatings and photocatalytic applications. With this study, for the first time, zirconium dioxide nanoparticles biologically synthesized with Streptomyces sp. HC1 strain were produced. The bio-synthesized ZrO2 NPs were characterized different methods and instruments. Then the nanoparticles were studied their bioactivity especially antimicrobial and antibiofilm.The results confirmed the efficient antimicrobial effect of zirkonium dioxide nanoparticles as well as efficient antibiofilm effect. The synthesis of ZrO2 nanoparticles from Streptomyces sp. HC1 by biological synthesis and determination of the bioactivity of these nanoparticles were reported for the first time in this work.

Kaynakça

  • [1] Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol. 69, 485–492.
  • [2] Kannan SK, Sundrarajan M (2015) Biosynthesis of Yttrium oxide nanoparticles using Acalypha indica leaf extract. Bull Mater Sci., 38, pages 945–950.
  • [3] Cazado ME, Goldberg E, Togneri MA, Denis A, Soba A (2021) A new irradiation growth model for Zr-based components of nuclear reactors for the DIONISIO code. Nucl Eng Des. 373, 111009
  • [4] Sekulić A, Furić K, Stubičar M (1997) Raman study of phase transitions in pure and alloyed zirconia induced by ball-milling and a laser beam. In: Journal of Molecular Structure, 410-411, 275-279.
  • [5] Ray JC, Saha CR, Pramanik P (2002) Stabilized nanoparticles of metastable ZrO2 with Cr3+/Cr4+ cations: Preparation from a polymer precursor and the study of the thermal and structural properties. J Eur Ceram Soc., 2, 851–862.
  • [6] Peshev P, Stambolova I, Vassilev S, Stefanov P, Blaskov V, Starbova K, Starbov N (2003) Spray pyrolysis deposition of nanostructured zirconia thin films. Mater Sci Eng B Solid-State Mater Adv Technol., 2012, 5.
  • [7] Tran T Van, Nguyen DTC, Kumar PS, Din ATM, Jalil AA, Vo DVN (2022) Green synthesis of ZrO2 nanoparticles and nanocomposites for biomedical and environmental applications: a review. Environ. Chem. Lett., 20, pages 1309–1331.
  • [8] Zink N, Emmerling F, Häger T, Panthöfer M, Tahir MN, Kolb U, Tremel W (2013) Low temperature synthesis of monodisperse nanoscaled ZrO2 with a large specific surface area. Dalt Trans., 42, 432-440.
  • [9] Kim JS, Lee DH, Kang S, Bae DS, Park HY, Na MK (2009) Synthesis and microstructure of zirconia nanopowders by glycothermal processing. Trans Nonferrous Met Soc China (English Ed., 19, 88-91.
  • [10] K.Geethalakshmi TP and JH (2012) Dielectric Studies on Nano Zirconium Dioxide Synthesized through Co-Precipitation Process. Int J Mater Metall Eng., 6, 4.
  • [11] Kumar S, Bhanjana G, Dilbaghi N, Manuja A (2012) Comparative investigation of cellular response of nanoparticles. Adv Mater Lett., 3(4), 345-349.
  • [12] Reddy BM, Sreekanth PM, Yamada Y, Kobayashi T (2005) Surface characterization and catalytic activity of sulfate-, molybdate- and tungstate-promoted Al 2O 3-ZrO 2 solid acid catalysts. J Mol Catal A Chem., 227, 81–89.
  • [13] Mueller R, Jossen R, Pratsinis SE, Watson M, Kamal Akhtar M (2004) Zirconia Nanoparticles Made in Spray Flames at High Production Rates. J Am Ceram Soc., 87(2), 197-202.
  • [14] Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and Growth of Au Nanoparticles inside Live Alfalfa Plants. Nano Lett., 2, 4, 397–401.
  • [15] Singh AV, Batuwangala M, Mundra R, Mehta K, Patke S, Falletta E, Patil R, Gade WN (2014) Biomineralized anisotropic gold microplate-macrophage interactions reveal frustrated phagocytosis-like phenomenon: A novel paclitaxel drug delivery vehicle. ACS Appl Mater Interfaces., 6, 16, 14679–14689.
  • [16] V. Singh A, Patil R, Anand A, Milani P, Gade WN (2010) Biological Synthesis of Copper Oxide Nano Particles Using Escherichia coli. Curr Nanosci., 6(4), 365 - 369.
  • [17] Parab H, Shenoy N, Kumar SA, Kumar SD, Reddy AVR (2016) One pot spontaneous green synthesis of gold nanoparticles using cocos nucifera (coconut palm) coir extract. J Mater Environ Sci., 7 (7), 2468-2481.
  • [18] Aitenneite H, Abboud Y, Tanane O, Solhy A, Sebti S, El Bouari A (2016) Rapid and green microwave-assisted synthesis of silver nanoparticles using aqueous Phoenix Dactylifera L. (date palm) leaf extract and their catalytic activity for 4-Nitrophenol reduction. J Mater Environ Sci., 7 (7), 2335-2339.
  • [19] Tan D, Teng Y, Liu Y, Zhuang Y, Qiu J (2009) Preparation of zirconia nanoparticles by pulsed laser ablation in liquid. Chem Lett., 38(11), 1102-1103.
  • [20] Brossmann U, Sagmeister M, Pölt P, Kothleitner G, Letofsky-Papst I, Szabó D V., Würschum R (2007) Microwave plasma synthesis of nano-crystalline YSZ. Phys Status Solidi - Rapid Res Lett., 1(3), 107-109.
  • [21] Salavati-Niasari M, Dadkhah M, Davar F (2009) Pure cubic ZrO2 nanoparticles by thermolysis of a new precursor. Polyhedron., 28, 3005–3009.
  • [22] Meetei SD, Singh SD (2014) Hydrothermal synthesis and white light emission of cubic ZrO 2:Eu3+ nanocrystals. J Alloys Compd., 587, 143–147.
  • [23] Majedi A, Davar F, Abbasi A (2014) Sucrose-mediated sol-gel synthesis of nanosized pure and S-doped zirconia and its catalytic activity for the synthesis of acetyl salicylic acid. J Ind Eng Chem., 20, 4215–4223.
  • [24] Lin C, Zhang C, Lin J (2007) Phase transformation and photoluminescence properties of nanocrystalline ZrO2 powders prepared via the pechini-type sol-gel process. J Phys Chem C., 111, 8, 3300–3307.
  • [25] Vijay Kumar PPN, Pammi SVN, Kollu P, Satyanarayana KVV, Shameem U (2014) Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind Crops Prod., 52, 562–566.
  • [26] Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci., 156, 1-13.
  • [27] Ash A, Revati K, Pandey BD (2011) Microbial synthesis of iron-based nanomaterials - A review. Bull. Mater. Sci., 34, 191–198.
  • [28] Hasan SS, Singh S, Parikh RY, Dharne MS, Patole MS, Prasad BLV, Shouche YS (2008) Bacterial synthesis of copper/copper oxide nanoparticles. J Nanosci Nanotechnol., 8(6):3191-6.
  • [29] Huang J, Lin L, Li Q, Sun D, Wang Y, Lu Y, He N, Yang K, Yang X, Wang H, Wang W, Lin W (2008) Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried cinnamomum camphora leaf in tubular microreactors. Ind Eng Chem Res., 47, 16, 6081–6090.
  • [30] Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol., 11(11):1553-9.
  • [31] Deniz F, Adıgüzel AO, Mazmancı MA (2019) THE BIOSYNTHESIS OF SILVER NANOPARTICLES WITH CORIOLUS VERSICOLOR. Turkish J Eng., 3(2), 92 - 96.
  • [32] Ram S, Mitra M, Shah F, Tirkey SR, Mishra S (2020) Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. J. Funct. Foods, 67, 103867.
  • [33] Suriyaraj SP, Ramadoss G, Chandraraj K, Selvakumar R (2019) One pot facile green synthesis of crystalline bio-ZrO2 nanoparticles using Acinetobacter sp. KCSI1 under room temperature. Mater Sci Eng C Mater Biol Appl., 105, 110021.
  • [34] Ahmed T, Ren H, Noman M, Shahid M, Liu M, Ali MA, Zhang J, Tian Y, Qi X, Li B (2021) Green synthesis and characterization of zirconium oxide nanoparticles by using a native Enterobacter sp. and its antifungal activity against bayberry twig blight disease pathogen Pestalotiopsis versicolor. NanoImpact., 21, 100281.
  • [35] Dwivedi R, Maurya A, Verma A, Prasad R, Bartwal KS (2011) Microwave assisted sol-gel synthesis of tetragonal zirconia nanoparticles. J Alloys Compd., 509, 6848–6851.
  • [36] Lim HS, Ahmad A, Hamzah H (2013) Synthesis of zirconium oxide nanoparticle by sol-gel technique. In: AIP Conference Proceedings, 1571, 812.
  • [37] Zhang H, Chen G (2009) potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol-gel method. Environ Sci Technol., 43, 8, 2905–2910.
  • [38] M. Lopez Goerne, T (2011) Study of Bacterial Sensitivity to Ag-TiO2 Nanoparticles. J Nanomed Nanotechnol. 2014(1), 3-5.
  • [39] Masoodiyeh F, Karimi-Sabet J, Khanchi AR, Mozdianfard MR (2015) Zirconia nanoparticle synthesis in sub and supercritical water - particle morphology and chemical equilibria. Powder Technol. 269, 461–469.

Zirkonyum dioksit nanopartikülllerinin Streptomyces sp. HC1 tarafından biyosentezi: Karakterizasyon ve Biyoaktivite

Yıl 2023, Cilt: 16 Sayı: 1, 224 - 238, 31.03.2023
https://doi.org/10.18185/erzifbed.1174027

Öz

Nanopartiküller birçok farklı şekilde sentezlenebilir ancak biyosentez dışındaki sentez yöntemleri çok pahalı ve çevreye zararlı işlemlerdir. Çeşitli morfoloji ve şekillere sahip nanopartiküller, küçük boyutlarının avantajlarından dolayı biyosentez çalışmalarında sıklıkla kullanılmaktadır. Biyosentezlenen nanopartiküller, çevre kirliliğinin önlenmesi ve ekonomik olması gibi nedenlerle büyük önem kazanmaktadır. Zirkonyum dioksit nanopartikülleri (ZrO2 NP'ler) özellikle diş kaplamalarında ve fotokatalitik uygulamalarda öne çıkmaktadır. Bu çalışma ile ilk kez zirkonyum dioksit nanopartikülleri biyolojik olarak Streptomyces sp. HC1 suşu kullanılarak üretildi. Biyo-sentezlenmiş ZrO2 NP'leri, farklı yöntemler ve cihazlarla karakterize edildi. Daha sonra nanopartiküllerin biyoaktiviteleri, özellikle antimikrobiyal ve antibiyofilm üzerinde çalışıldı. Sonuçlar, zirkonyum dioksit nanopartiküllerin etkili antimikrobiyal etkisini ve ayrıca etkili antibiyofilm etkisini doğruladı. Streptomyces sp. HC1'den ZrO2 nanoparçacıklarının biyolojik sentezi ve bu nanopartiküllerin biyoaktivitesinin belirlenmesi ilk kez bu çalışmada rapor edilmiştir.

Kaynakça

  • [1] Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol. 69, 485–492.
  • [2] Kannan SK, Sundrarajan M (2015) Biosynthesis of Yttrium oxide nanoparticles using Acalypha indica leaf extract. Bull Mater Sci., 38, pages 945–950.
  • [3] Cazado ME, Goldberg E, Togneri MA, Denis A, Soba A (2021) A new irradiation growth model for Zr-based components of nuclear reactors for the DIONISIO code. Nucl Eng Des. 373, 111009
  • [4] Sekulić A, Furić K, Stubičar M (1997) Raman study of phase transitions in pure and alloyed zirconia induced by ball-milling and a laser beam. In: Journal of Molecular Structure, 410-411, 275-279.
  • [5] Ray JC, Saha CR, Pramanik P (2002) Stabilized nanoparticles of metastable ZrO2 with Cr3+/Cr4+ cations: Preparation from a polymer precursor and the study of the thermal and structural properties. J Eur Ceram Soc., 2, 851–862.
  • [6] Peshev P, Stambolova I, Vassilev S, Stefanov P, Blaskov V, Starbova K, Starbov N (2003) Spray pyrolysis deposition of nanostructured zirconia thin films. Mater Sci Eng B Solid-State Mater Adv Technol., 2012, 5.
  • [7] Tran T Van, Nguyen DTC, Kumar PS, Din ATM, Jalil AA, Vo DVN (2022) Green synthesis of ZrO2 nanoparticles and nanocomposites for biomedical and environmental applications: a review. Environ. Chem. Lett., 20, pages 1309–1331.
  • [8] Zink N, Emmerling F, Häger T, Panthöfer M, Tahir MN, Kolb U, Tremel W (2013) Low temperature synthesis of monodisperse nanoscaled ZrO2 with a large specific surface area. Dalt Trans., 42, 432-440.
  • [9] Kim JS, Lee DH, Kang S, Bae DS, Park HY, Na MK (2009) Synthesis and microstructure of zirconia nanopowders by glycothermal processing. Trans Nonferrous Met Soc China (English Ed., 19, 88-91.
  • [10] K.Geethalakshmi TP and JH (2012) Dielectric Studies on Nano Zirconium Dioxide Synthesized through Co-Precipitation Process. Int J Mater Metall Eng., 6, 4.
  • [11] Kumar S, Bhanjana G, Dilbaghi N, Manuja A (2012) Comparative investigation of cellular response of nanoparticles. Adv Mater Lett., 3(4), 345-349.
  • [12] Reddy BM, Sreekanth PM, Yamada Y, Kobayashi T (2005) Surface characterization and catalytic activity of sulfate-, molybdate- and tungstate-promoted Al 2O 3-ZrO 2 solid acid catalysts. J Mol Catal A Chem., 227, 81–89.
  • [13] Mueller R, Jossen R, Pratsinis SE, Watson M, Kamal Akhtar M (2004) Zirconia Nanoparticles Made in Spray Flames at High Production Rates. J Am Ceram Soc., 87(2), 197-202.
  • [14] Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and Growth of Au Nanoparticles inside Live Alfalfa Plants. Nano Lett., 2, 4, 397–401.
  • [15] Singh AV, Batuwangala M, Mundra R, Mehta K, Patke S, Falletta E, Patil R, Gade WN (2014) Biomineralized anisotropic gold microplate-macrophage interactions reveal frustrated phagocytosis-like phenomenon: A novel paclitaxel drug delivery vehicle. ACS Appl Mater Interfaces., 6, 16, 14679–14689.
  • [16] V. Singh A, Patil R, Anand A, Milani P, Gade WN (2010) Biological Synthesis of Copper Oxide Nano Particles Using Escherichia coli. Curr Nanosci., 6(4), 365 - 369.
  • [17] Parab H, Shenoy N, Kumar SA, Kumar SD, Reddy AVR (2016) One pot spontaneous green synthesis of gold nanoparticles using cocos nucifera (coconut palm) coir extract. J Mater Environ Sci., 7 (7), 2468-2481.
  • [18] Aitenneite H, Abboud Y, Tanane O, Solhy A, Sebti S, El Bouari A (2016) Rapid and green microwave-assisted synthesis of silver nanoparticles using aqueous Phoenix Dactylifera L. (date palm) leaf extract and their catalytic activity for 4-Nitrophenol reduction. J Mater Environ Sci., 7 (7), 2335-2339.
  • [19] Tan D, Teng Y, Liu Y, Zhuang Y, Qiu J (2009) Preparation of zirconia nanoparticles by pulsed laser ablation in liquid. Chem Lett., 38(11), 1102-1103.
  • [20] Brossmann U, Sagmeister M, Pölt P, Kothleitner G, Letofsky-Papst I, Szabó D V., Würschum R (2007) Microwave plasma synthesis of nano-crystalline YSZ. Phys Status Solidi - Rapid Res Lett., 1(3), 107-109.
  • [21] Salavati-Niasari M, Dadkhah M, Davar F (2009) Pure cubic ZrO2 nanoparticles by thermolysis of a new precursor. Polyhedron., 28, 3005–3009.
  • [22] Meetei SD, Singh SD (2014) Hydrothermal synthesis and white light emission of cubic ZrO 2:Eu3+ nanocrystals. J Alloys Compd., 587, 143–147.
  • [23] Majedi A, Davar F, Abbasi A (2014) Sucrose-mediated sol-gel synthesis of nanosized pure and S-doped zirconia and its catalytic activity for the synthesis of acetyl salicylic acid. J Ind Eng Chem., 20, 4215–4223.
  • [24] Lin C, Zhang C, Lin J (2007) Phase transformation and photoluminescence properties of nanocrystalline ZrO2 powders prepared via the pechini-type sol-gel process. J Phys Chem C., 111, 8, 3300–3307.
  • [25] Vijay Kumar PPN, Pammi SVN, Kollu P, Satyanarayana KVV, Shameem U (2014) Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind Crops Prod., 52, 562–566.
  • [26] Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci., 156, 1-13.
  • [27] Ash A, Revati K, Pandey BD (2011) Microbial synthesis of iron-based nanomaterials - A review. Bull. Mater. Sci., 34, 191–198.
  • [28] Hasan SS, Singh S, Parikh RY, Dharne MS, Patole MS, Prasad BLV, Shouche YS (2008) Bacterial synthesis of copper/copper oxide nanoparticles. J Nanosci Nanotechnol., 8(6):3191-6.
  • [29] Huang J, Lin L, Li Q, Sun D, Wang Y, Lu Y, He N, Yang K, Yang X, Wang H, Wang W, Lin W (2008) Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried cinnamomum camphora leaf in tubular microreactors. Ind Eng Chem Res., 47, 16, 6081–6090.
  • [30] Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol., 11(11):1553-9.
  • [31] Deniz F, Adıgüzel AO, Mazmancı MA (2019) THE BIOSYNTHESIS OF SILVER NANOPARTICLES WITH CORIOLUS VERSICOLOR. Turkish J Eng., 3(2), 92 - 96.
  • [32] Ram S, Mitra M, Shah F, Tirkey SR, Mishra S (2020) Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. J. Funct. Foods, 67, 103867.
  • [33] Suriyaraj SP, Ramadoss G, Chandraraj K, Selvakumar R (2019) One pot facile green synthesis of crystalline bio-ZrO2 nanoparticles using Acinetobacter sp. KCSI1 under room temperature. Mater Sci Eng C Mater Biol Appl., 105, 110021.
  • [34] Ahmed T, Ren H, Noman M, Shahid M, Liu M, Ali MA, Zhang J, Tian Y, Qi X, Li B (2021) Green synthesis and characterization of zirconium oxide nanoparticles by using a native Enterobacter sp. and its antifungal activity against bayberry twig blight disease pathogen Pestalotiopsis versicolor. NanoImpact., 21, 100281.
  • [35] Dwivedi R, Maurya A, Verma A, Prasad R, Bartwal KS (2011) Microwave assisted sol-gel synthesis of tetragonal zirconia nanoparticles. J Alloys Compd., 509, 6848–6851.
  • [36] Lim HS, Ahmad A, Hamzah H (2013) Synthesis of zirconium oxide nanoparticle by sol-gel technique. In: AIP Conference Proceedings, 1571, 812.
  • [37] Zhang H, Chen G (2009) potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol-gel method. Environ Sci Technol., 43, 8, 2905–2910.
  • [38] M. Lopez Goerne, T (2011) Study of Bacterial Sensitivity to Ag-TiO2 Nanoparticles. J Nanomed Nanotechnol. 2014(1), 3-5.
  • [39] Masoodiyeh F, Karimi-Sabet J, Khanchi AR, Mozdianfard MR (2015) Zirconia nanoparticle synthesis in sub and supercritical water - particle morphology and chemical equilibria. Powder Technol. 269, 461–469.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gözde Koşarsoy Ağçeli 0000-0001-8318-8990

Hamideh Hammamchi 0000-0002-2025-3828

Nilüfer Cihangir 0000-0002-0830-635X

Zümriye Aksu 0000-0002-2812-5345

Erken Görünüm Tarihi 29 Mart 2023
Yayımlanma Tarihi 31 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 16 Sayı: 1

Kaynak Göster

APA Koşarsoy Ağçeli, G., Hammamchi, H., Cihangir, N., Aksu, Z. (2023). Biosynthesis of Zirconium dioxide nanoparticles by Streptomyces sp. HC1: Characterization and Bioactivity. Erzincan University Journal of Science and Technology, 16(1), 224-238. https://doi.org/10.18185/erzifbed.1174027