Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 16 Sayı: 1, 239 - 257, 31.03.2023
https://doi.org/10.18185/erzifbed.1247007

Öz

Kaynakça

  • [1] Yao, D., Liu, X., Wang, J., Fan, W., Li, M., Fu, H., Zhang, H., Yang, X., Zou, Q., An, X., (2021) Numerical insights on the spreading of practical 316 L stainless steel powder in SLM additive manufacturing, Powder Technology, 390, 197-208.
  • [2] Wang, Y.F., Yu, C.F., Xing, L.L., Li, K.L., Chen J.H., Liu, W., Ma, J., Shen, Z.J., (2020) Grain structure and texture of the SLM single track, J. Mater. Process. Technol., 281, 116591.
  • [3] Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O., Brandt, M., (2019) SLM lattice structures: properties, performance, applications and challenges, Mater. Des., 183, 108137.
  • [4] Samantaray, M., Thatoi, D.N., Sahoo, S., (2019) Modeling and optimization of process parameters for laser powder bed fusion of AlSi10Mg alloy, Lasers Manufact. Mater. Process., 6, 356–373.
  • [5] Tekdir, H., Yetim, T., Yetim, A.F., (2021) Corrosion Properties of Ceramic-Based TiO2 Films on Plasma Oxidized Ti6Al4V/316L Layered Implant Structured Manufactured by Selective Laser Melting, J Bionic Eng., 18, 944–957.
  • [6] Tekdir, H., Yetim, A.F., (2021) Additive manufacturing of multiple layered materials (Ti6Al4V/316L) and improving their tribological properties with glow discharge surface modification, Vacuum, 184, 109893.
  • [7] Yetim, A. F., Yazici, M., (2014) Wear resistance and non-magnetic layer formation on 316L implant material with plasma nitriding, J. Bionic Eng., 11 (4), 620-629.
  • [8] Obadele, B.A., Andrews, A., Olubambi, P.A., Mathew, M.T., Pityana, S., (2015) Effect of ZrO2 addition on the dry sliding wear behavior of laser clad Ti6Al4V alloy, Wear, 328 (329), 295-300.
  • [9] Fernandes, A.C., (2006) Tribocorrosion behavior of plasma nitrided and plasma nitrided + oxidised Ti6Al4V alloy, Surf. Coating. Technol., 200 (22), 6218-6224.
  • [10] Zhu, Y., Zou, J., Yang, H., (2018) Wear performance of metal parts fabricated by selective laser melting: a literature review, J. Zhejiang Univ. A, 19(2), 95-110.
  • [11] Sing, S.L., Yeong, W.Y., Wiria, F.E., (2016) Selective laser melting of titanium alloy with 50wt% tantalum: microstructure and mechanical properties, J. Alloys Compd., 660, 461-470.
  • [12] Song, C., Zhang, M., Yang, Y., Wang, D., Jia-kuo, Y., (2018) Morphology and properties of CoCrMo parts fabricated by selective laser melting, Mater. Sci. Eng. A, 713, 206-213.
  • [13] Simson, T., Emmel, A., Dwars, A., Böhm, J., (2017) Residual stres measurements on AISI 316L samples manufactured by selective laser melting, Addit. Manuf., 17, 183-189.
  • [14] Mohammed, M.T., (2018) Mechanical properties of SLM-Titanium materials for biomedical applications: a review, Mater. Today Proc., 5 (9), 17906-17913.
  • [15] Agopovichev, A.V., Kokareva, V.V., Smelov, V.G., Sotov, A.V., (2016) Selective laser melting of titanium alloy: investigation of mechanical properties and microstructure, IOP Conf. Ser. Mater. Sci. Eng., 156 (1).
  • [16] Čapek, J., Machová, M., Fousová, M., Kubásek, J., Vojtěch, D., Fojt, J., Jablonská, E., Lipov, J., Ruml, T., (2016) Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting Materials Science and Engineering C, 69, 631-639.
  • [17] Bremen, S., Meiners, W., Diatlov, A., (2012) Laser. Technik. J., 9, 33–38.
  • [18] Kruth,J.,Froyen,P.,Van,L.,Vaerenbergh,J.,(2004)J.Mater. Process.Technol.,149, 616–622.
  • [19] Laohaprapanon, A., Jeamwatthanachai, P., (2012) Wongcumchang, M., et al., Mater. Manuf. Technol. II Pts 1 and 2, 816–820. [20] Cherry, J.A.,Davies,H.M., Mehmood, S.,(2014) Int. J. Adv. Manuf. Technol.,76, 869–879.
  • [21] Yadroitsev,I.,Krakhmalev,P.,Yadroitsava,I.,(2013)J.Mater.Process.Technol.213,606–613.
  • [22] Li, R., Shi, Y., Wang, Z., (2010) Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting Appl. Surf. Sci., 256, 4350–4356.
  • [23] Li, R., Liu, J., Shi, Y., (2012) Int. J. Adv. Manuf. Technol., 59, 1025–1035.
  • [24] Tekdir, H., Yetim, T., Yetim, A.F., (2021) Corrosion Properties of Ceramic-Based TiO2 Films on Plasma Oxidized Ti6Al4V/316L Layered Implant Structured Manufactured by Selective Laser Melting, J Bionic Eng, 18, 944–957.
  • [25] Bloyce, A., Qi, P.Y., Dong, H., Bell, T., (1998) Surface modification of titanium alloys for combined improvements in corrosion and wear resistance. Surface and Coatings Technology, 107, 125–132.
  • [26] Bolzoni, L., Meléndez, I. M., Ruiz-Navas, E.M., Gordo, E., (2012) Microstructural evolution and mechanical properties of the Ti-6Al-4V alloy produced by vacuum hot-pressing. Materials Science and Engineering A, 546, 189–197.
  • [27] Wu, G., Zhang, S., Wang, Y., Sun, M., Zhang, Q., Kovalenko, V., Yao, J., (2022) Porous ceramic coating formed on 316L by laser cladding combined plasma electrolytic oxidation for biomedical application, Trans. Nonferrous Met. Soc. China, 32, 2993−3004.
  • [28] Yang, Z., Tu, Q., Maitz, M.F., Zhou, S., Wang, J., Huang, N., (2012) Direct thrombin inhibitorbivalirudin functionalized plasma polymerized allylamine coating for improved biocompatibility of vascular devices, Biomaterials, 33, 7959−7971.
  • Katta, P., Nalliyan, R., (2019) Corrosion resistance with selfhealing behavior and biocompatibility of Ce incorporated niobium oxide coated 316L SS for orthopedic applications, Surface and Coatings Technology, 375, 715−726.
  • [30] Garcia-Lobato, M.A., Mtz-Enrıquez, A. I., Garcia, C.R., Velazquez-Manzanares, M., Avalosbelmontes, F., Ramos-Gonzalez, R., Garciacerda, L.A., (2019) Corrosion resistance and in vitro bioactivity of dense and porous titania coatings deposited on 316L SS by spraying method, Applied Surface Science, 484, 975−980.
  • [31] Moshref-Javadi, M., Edris, H., Shafyei, A., Salimi-Jazi H., Abdolvand, E., (2018) Evaluation of hydrogen permeation through standalone thermally sprayed coatings of AISI 316L stainless steel, International Journal of Hydrogen Energy, 43, 4657−4670.
  • [32] Ke-Dong, Z., Jian-Xin, D., Shu-Ting, L., Xiao-Ming, Y., (2016) Effect of micro/nano-textures and burnished MoS2 addition on the tribological properties of PVD TiAlN coatings against AISI 316 stainless steel, Surface and Coatings Technology, 291, 382−395.
  • [33] Shu-Wei, G., Dong-Hai, X., Yu, L., Yan-Meng, G., Yan-Hui, L., (2020) Corrosion characterization of ZrO2 and TiO2 ceramic coatings via air plasma spraying on 316 stainless steel in oxygenated sub- and supercritical water, The Journal of Supercritical Fluids, 157, 104716.
  • [34] Çomaklı, O., Yazıcı, M., Kovacı, H., Yetim, T., Yetim, A.F., Çelik, A., (2018) Tribological and electrochemical properties of TiO2 films produced on Cp-Ti by sol-gel and SILAR in bio-simulated environment, Surf. Coat. Technol., 352, 513-521.
  • [35] Banerjee, D.A., Kessman, A.J., Cairns, D.R., Sierros, K.A., (2014) Tribology of silica nano-particle-reinforced, hydrophobic sol–gel composite coatings, Surf. Coat. Technol., 260, 214–219.
  • [36] Mora, L.V., Naik, S., Paul, S., Dawson, R., Neville, A., Barker, R., (2017) Influence of silica nanoparticles on corrosion resistance of sol-gel based coatings on mild steel, Surf. Coat. Technol., 324, 368–375.
  • [37] Çomakli, O., Yazici, M., Yetim, T., Yetim, A.F., Çelik, A., (2017) The effects of aging time on the structural and electrochemical properties of composite coatings on CP-Ti substrate, J. Bionic Eng., 14, 532–539.
  • [38] Margareth, R.C., Marques, Loebenberg, R., Almukainzi, M., (2011) Simulated Biological Fluids with Possible Application in Dissolution Testing Dissolution Technologies, August doi.org/10.14227/DT180311P15.
  • [39] Duffo, G.S., Castillo E.Q., (2004) Development of an artificial saliva solution for studying the corrosion behavior of dental alloys. Corrosion, 6, 594–602.
  • [40] Pathak, S., Böhm, M., Kaufman, J., Kopeček, J., Zulić, S., Stránský, O., Shukla, A., Brajer, J., Beránek, L., Radhakrisnan, J., Rostohar, D., Mocek, T., (2023) Surface integrity of SLM manufactured meso-size gears in laser shock peening without coating, Journal of Manufacturing Processes, 85, 764-773.
  • Arturo, G.R.M., Hugo, L.M.V., Rafael, G.H., Egberto, B.B., Antonio, G.S.J., (2015) Electrochemical Characterization of AISI 2205 Duplex Stainless Steel Welded Joints with Electromagnetic Interaction, Procedia Materials Science, 8, 950-958. [42] Gomes de Souza, D.D.B., Vilarinho, L.O., (2020) Influence of present phases in corrosion and mechanical behavior of UNS S31803 duplex stainless steel welded by conventional short circuit MIG/MAG process, Journal of Materials Research and Technology, 9, 11244-11254.
  • [43] Araneda, A.A.B., Kappes, M.A., Rodríguez, M.A., Carranza, R.M., (2022) Pitting corrosion of Ni-Cr-Fe alloys at open circuit potential in chloride plus thiosulfate solutions, Corrosion Science, 198, 110121.
  • [44] Wasekar, N.P., (2022) The influence of grain size and triple junctions on corrosion behavior of nanocrystalline Ni and Ni-W alloy, Scripta Materialia, 213, 114604
  • [45] Yetim, T., Turalioglu, K., Taftali, M., Tekdir, H., Kovaci, H., Yetim, A.F., (2022) Synthesis and characterization of wear and corrosion resistant Ni-doped Al2O3 nanocomposite ceramic coatings by sol-gel method, Surf. Coat. Technol., 444, 128659.
  • [46] Çelik, A., Acar, M.T., Yetim, T., Kovacı, H., Yetim, A.F., (2020) Improving structural, tribological and electrochemical properties of Ti6Al4V alloy with B-doped TiO2 thin films, Tribology International, 146, 106210. [47] Çeliker, M., (2019) Conicraly Bağ ve Ysz İçerikli Termal Bariyer Kaplamaların Elektrokimyasal Korozyon Davranışlarının İncelenmesi, Yüksek Lisans Tezi, Bartın.
  • [48] Doğru, B. M., Yazıcı, B., (October, 06-09-2010)135 Poli(Pirol-Ko-O-Anisdin) Kaplı Alüminyumun %3,5 NaCl’deki Korozyon Davranışı, XII. International Corrosion Symposium, Eskişehir, Turkey.
  • [49] Bozkurt, Y.B., Çelik, A., (2022) Tailoring biodegration rate of AZ31 magnesium alloy Electrochimica Acta, 435, 141403.
  • [50] Jihui, D.Z., Hu, W.W., (2022) Hydroxyapatite film prepared by hydrothermal method on layered double hydroxides coated Mg Alloy and its corrosion resistance, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 647, 129075.
  • [51] Husien, V., Haakmann, S.F., Brinkbaumer, J., Ulbricht, M., (2022) Comparison of the nucleation and growth of a phosphate conversion coating on Zn–Al and Zn–Al–Mg coatings under the influence of a corrosion inhibitor film, Surface & Coatings Technology, 451, 129044.
  • [52] Wang, Y., Si, J., Si, Y., Shi, Z., (2023) Preparation and electrochemical corrosion performances of Zr-Ti-Ni-Cu-Be high-entropy bulk metallic glasses, Materials Science & Engineering B, 289, 116267.
  • [53] Hernandez, R., Alma, B., Jose, D.M., Juan, G.P., Jose, M.O., Domínguez, M.E., Mujica, V., (2022) Experimental and theoretical study on the effectiveness of ionic liquids as corrosion inhibitors, Computational and Theoretical Chemistry, 1210, 113640.
  • Dong Wei, B., Tianyi, L., Longjun, Z., Yueming, C., Yonggang, F., Hai, Z., Weijian, L., Sun, Y.Y., (2023) Clarifying the effect of a small amount of Cr content on the corrosion of Ni-Mo steel in tropical marine atmospheric environment, Corrosion Science, 210, 110813.
  • [55] Turalioglu, K., Taftalı, M., Tekdir, H., Çomaklı, O., Yazıcı, M., Yetim, T., Yetim, A.F., (2021) The tribological and corrosion properties of anodized Ti6Al4V/316L bimetallic structures manufactured by additive manufacturing, Surf. Coat. Technol., 405, 126635.
  • [56] Manazoğlu, M., (2013) Elektrokimyasal Yöntemle Nikelmolibden Alaşım Kaplamaların Üretimi ve Karakterizasyonu, Yüksek Lisans Tezi İstanbul.
  • [57] Küstü, C., (2008) Asitli Ortamdaki Korozyona Karşı Schıff Bazı Temelli Bazı Yeni İnhibitörlerin Geliştirilmesi, Yüksek Lisans Tezi.
  • [58] Duran, B., Çakmakcı, İ., Bereket, G., (06-09-2010) Bakır Üzerinde Pirol Ve N-Metil Pirolün Kopolimeri İle Çift Kaplamalarının Sentezi ve Korozyon Performanslarının Araştırılması, XII. International Corrosion Symposium, Eskişehir, Turkey.
  • [59] Akbarinezhad, E., Faridi, H.R., (2008) Surface Engineering, 24, 280-286.
  • [60] Zhao, X., Wang, J., Wang, Y., Kong, T., Zhong, L. And Zhang, W., (2007) Electrochemistry Communications, 9, 1394-1399.
  • [61] Hırayama, R. and Haruyama, S., (1991) Electrochemical Impedance for Degraded Coated Steel Having Pores, Corrosion, 47, 952-958.
  • [62] Akbarinezhad, E., Bahremandi, M., Faridi, H.R., Rezaei, F., (1988) Another approach for ranking and evaluating organic paint coatings via electrochemical impedance spectroscopy, Corrosion Science, 51, 356-363, 2009. 24.
  • [63] Çoban, K., (2006) Ketonik Bazlı Reçinelerle Paslanmaz Çelik ve Bakırın Korozyonunun Önlenmesi, Yüksek Lisans Tezi.
  • [64] Mutlu, R.N., Ateş, S., Mert, B.D., Yazıcı, B., (15-17 Ekim 2014) Sodyum Molibdat (Na2MoO4) Katkısının, 7075 Aluminyum Alaşımının Sülfürik Asit İçerisindeki Eloksal İşlemine ve Korozyon Davranışlarına Etkisi, 13. Uluslararası Korozyon Sempozyumu Bildiriler Kitabı, Fırat Üniversitesi, Elazığ, Türkiye.

Electrochemical Behavior of CoO/Ag2O/TiO2 Ceramic and Composite Coated Selective Laser Manufactured 316L Stainless Steel

Yıl 2023, Cilt: 16 Sayı: 1, 239 - 257, 31.03.2023
https://doi.org/10.18185/erzifbed.1247007

Öz

Seçici lazer ergitme eklemeli üretim yöntemi ile üretilmiş 316L paslanmaz çeliğinin korozyon direncini artırmak için ayrı ayrı Ag2O, CoO, ve TiO2 ve Ag2O/CoO/TiO2 kompozit seramik film 316L yüzeyine sol-jel dip kaplama metodu ile kaplandı. Kaplanmış ve kaplanmamış numunelerin yapısal özellikleri XRD ve SEM ile karakterize edildi. Numunelerin tamamının korozyon direnci simüle edilmiş yapay tükürük sıvısı içerisinde potansiyodinamik polarizasyon ve elektrokimyasal empedans spektroskopi (EIS) testleri değerlendirildi. Test sonuçlarına göre, oldukça yoğun, kolonsal ve porlu olmayan, kompakt ve 30-40 μm kalınlığında seramik oksit filmler 316L yüzeyinde oluşturuldu. Ayrıca bütün seramik filmler 316L yüzeyinin korozyon direncini artırdı. En yüksek korozyon dirençli yüzey Ag2O/CoO/TiO2 kompozit seramik film kaplı 316L yüzeyinde elde edildi.

Kaynakça

  • [1] Yao, D., Liu, X., Wang, J., Fan, W., Li, M., Fu, H., Zhang, H., Yang, X., Zou, Q., An, X., (2021) Numerical insights on the spreading of practical 316 L stainless steel powder in SLM additive manufacturing, Powder Technology, 390, 197-208.
  • [2] Wang, Y.F., Yu, C.F., Xing, L.L., Li, K.L., Chen J.H., Liu, W., Ma, J., Shen, Z.J., (2020) Grain structure and texture of the SLM single track, J. Mater. Process. Technol., 281, 116591.
  • [3] Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O., Brandt, M., (2019) SLM lattice structures: properties, performance, applications and challenges, Mater. Des., 183, 108137.
  • [4] Samantaray, M., Thatoi, D.N., Sahoo, S., (2019) Modeling and optimization of process parameters for laser powder bed fusion of AlSi10Mg alloy, Lasers Manufact. Mater. Process., 6, 356–373.
  • [5] Tekdir, H., Yetim, T., Yetim, A.F., (2021) Corrosion Properties of Ceramic-Based TiO2 Films on Plasma Oxidized Ti6Al4V/316L Layered Implant Structured Manufactured by Selective Laser Melting, J Bionic Eng., 18, 944–957.
  • [6] Tekdir, H., Yetim, A.F., (2021) Additive manufacturing of multiple layered materials (Ti6Al4V/316L) and improving their tribological properties with glow discharge surface modification, Vacuum, 184, 109893.
  • [7] Yetim, A. F., Yazici, M., (2014) Wear resistance and non-magnetic layer formation on 316L implant material with plasma nitriding, J. Bionic Eng., 11 (4), 620-629.
  • [8] Obadele, B.A., Andrews, A., Olubambi, P.A., Mathew, M.T., Pityana, S., (2015) Effect of ZrO2 addition on the dry sliding wear behavior of laser clad Ti6Al4V alloy, Wear, 328 (329), 295-300.
  • [9] Fernandes, A.C., (2006) Tribocorrosion behavior of plasma nitrided and plasma nitrided + oxidised Ti6Al4V alloy, Surf. Coating. Technol., 200 (22), 6218-6224.
  • [10] Zhu, Y., Zou, J., Yang, H., (2018) Wear performance of metal parts fabricated by selective laser melting: a literature review, J. Zhejiang Univ. A, 19(2), 95-110.
  • [11] Sing, S.L., Yeong, W.Y., Wiria, F.E., (2016) Selective laser melting of titanium alloy with 50wt% tantalum: microstructure and mechanical properties, J. Alloys Compd., 660, 461-470.
  • [12] Song, C., Zhang, M., Yang, Y., Wang, D., Jia-kuo, Y., (2018) Morphology and properties of CoCrMo parts fabricated by selective laser melting, Mater. Sci. Eng. A, 713, 206-213.
  • [13] Simson, T., Emmel, A., Dwars, A., Böhm, J., (2017) Residual stres measurements on AISI 316L samples manufactured by selective laser melting, Addit. Manuf., 17, 183-189.
  • [14] Mohammed, M.T., (2018) Mechanical properties of SLM-Titanium materials for biomedical applications: a review, Mater. Today Proc., 5 (9), 17906-17913.
  • [15] Agopovichev, A.V., Kokareva, V.V., Smelov, V.G., Sotov, A.V., (2016) Selective laser melting of titanium alloy: investigation of mechanical properties and microstructure, IOP Conf. Ser. Mater. Sci. Eng., 156 (1).
  • [16] Čapek, J., Machová, M., Fousová, M., Kubásek, J., Vojtěch, D., Fojt, J., Jablonská, E., Lipov, J., Ruml, T., (2016) Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting Materials Science and Engineering C, 69, 631-639.
  • [17] Bremen, S., Meiners, W., Diatlov, A., (2012) Laser. Technik. J., 9, 33–38.
  • [18] Kruth,J.,Froyen,P.,Van,L.,Vaerenbergh,J.,(2004)J.Mater. Process.Technol.,149, 616–622.
  • [19] Laohaprapanon, A., Jeamwatthanachai, P., (2012) Wongcumchang, M., et al., Mater. Manuf. Technol. II Pts 1 and 2, 816–820. [20] Cherry, J.A.,Davies,H.M., Mehmood, S.,(2014) Int. J. Adv. Manuf. Technol.,76, 869–879.
  • [21] Yadroitsev,I.,Krakhmalev,P.,Yadroitsava,I.,(2013)J.Mater.Process.Technol.213,606–613.
  • [22] Li, R., Shi, Y., Wang, Z., (2010) Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting Appl. Surf. Sci., 256, 4350–4356.
  • [23] Li, R., Liu, J., Shi, Y., (2012) Int. J. Adv. Manuf. Technol., 59, 1025–1035.
  • [24] Tekdir, H., Yetim, T., Yetim, A.F., (2021) Corrosion Properties of Ceramic-Based TiO2 Films on Plasma Oxidized Ti6Al4V/316L Layered Implant Structured Manufactured by Selective Laser Melting, J Bionic Eng, 18, 944–957.
  • [25] Bloyce, A., Qi, P.Y., Dong, H., Bell, T., (1998) Surface modification of titanium alloys for combined improvements in corrosion and wear resistance. Surface and Coatings Technology, 107, 125–132.
  • [26] Bolzoni, L., Meléndez, I. M., Ruiz-Navas, E.M., Gordo, E., (2012) Microstructural evolution and mechanical properties of the Ti-6Al-4V alloy produced by vacuum hot-pressing. Materials Science and Engineering A, 546, 189–197.
  • [27] Wu, G., Zhang, S., Wang, Y., Sun, M., Zhang, Q., Kovalenko, V., Yao, J., (2022) Porous ceramic coating formed on 316L by laser cladding combined plasma electrolytic oxidation for biomedical application, Trans. Nonferrous Met. Soc. China, 32, 2993−3004.
  • [28] Yang, Z., Tu, Q., Maitz, M.F., Zhou, S., Wang, J., Huang, N., (2012) Direct thrombin inhibitorbivalirudin functionalized plasma polymerized allylamine coating for improved biocompatibility of vascular devices, Biomaterials, 33, 7959−7971.
  • Katta, P., Nalliyan, R., (2019) Corrosion resistance with selfhealing behavior and biocompatibility of Ce incorporated niobium oxide coated 316L SS for orthopedic applications, Surface and Coatings Technology, 375, 715−726.
  • [30] Garcia-Lobato, M.A., Mtz-Enrıquez, A. I., Garcia, C.R., Velazquez-Manzanares, M., Avalosbelmontes, F., Ramos-Gonzalez, R., Garciacerda, L.A., (2019) Corrosion resistance and in vitro bioactivity of dense and porous titania coatings deposited on 316L SS by spraying method, Applied Surface Science, 484, 975−980.
  • [31] Moshref-Javadi, M., Edris, H., Shafyei, A., Salimi-Jazi H., Abdolvand, E., (2018) Evaluation of hydrogen permeation through standalone thermally sprayed coatings of AISI 316L stainless steel, International Journal of Hydrogen Energy, 43, 4657−4670.
  • [32] Ke-Dong, Z., Jian-Xin, D., Shu-Ting, L., Xiao-Ming, Y., (2016) Effect of micro/nano-textures and burnished MoS2 addition on the tribological properties of PVD TiAlN coatings against AISI 316 stainless steel, Surface and Coatings Technology, 291, 382−395.
  • [33] Shu-Wei, G., Dong-Hai, X., Yu, L., Yan-Meng, G., Yan-Hui, L., (2020) Corrosion characterization of ZrO2 and TiO2 ceramic coatings via air plasma spraying on 316 stainless steel in oxygenated sub- and supercritical water, The Journal of Supercritical Fluids, 157, 104716.
  • [34] Çomaklı, O., Yazıcı, M., Kovacı, H., Yetim, T., Yetim, A.F., Çelik, A., (2018) Tribological and electrochemical properties of TiO2 films produced on Cp-Ti by sol-gel and SILAR in bio-simulated environment, Surf. Coat. Technol., 352, 513-521.
  • [35] Banerjee, D.A., Kessman, A.J., Cairns, D.R., Sierros, K.A., (2014) Tribology of silica nano-particle-reinforced, hydrophobic sol–gel composite coatings, Surf. Coat. Technol., 260, 214–219.
  • [36] Mora, L.V., Naik, S., Paul, S., Dawson, R., Neville, A., Barker, R., (2017) Influence of silica nanoparticles on corrosion resistance of sol-gel based coatings on mild steel, Surf. Coat. Technol., 324, 368–375.
  • [37] Çomakli, O., Yazici, M., Yetim, T., Yetim, A.F., Çelik, A., (2017) The effects of aging time on the structural and electrochemical properties of composite coatings on CP-Ti substrate, J. Bionic Eng., 14, 532–539.
  • [38] Margareth, R.C., Marques, Loebenberg, R., Almukainzi, M., (2011) Simulated Biological Fluids with Possible Application in Dissolution Testing Dissolution Technologies, August doi.org/10.14227/DT180311P15.
  • [39] Duffo, G.S., Castillo E.Q., (2004) Development of an artificial saliva solution for studying the corrosion behavior of dental alloys. Corrosion, 6, 594–602.
  • [40] Pathak, S., Böhm, M., Kaufman, J., Kopeček, J., Zulić, S., Stránský, O., Shukla, A., Brajer, J., Beránek, L., Radhakrisnan, J., Rostohar, D., Mocek, T., (2023) Surface integrity of SLM manufactured meso-size gears in laser shock peening without coating, Journal of Manufacturing Processes, 85, 764-773.
  • Arturo, G.R.M., Hugo, L.M.V., Rafael, G.H., Egberto, B.B., Antonio, G.S.J., (2015) Electrochemical Characterization of AISI 2205 Duplex Stainless Steel Welded Joints with Electromagnetic Interaction, Procedia Materials Science, 8, 950-958. [42] Gomes de Souza, D.D.B., Vilarinho, L.O., (2020) Influence of present phases in corrosion and mechanical behavior of UNS S31803 duplex stainless steel welded by conventional short circuit MIG/MAG process, Journal of Materials Research and Technology, 9, 11244-11254.
  • [43] Araneda, A.A.B., Kappes, M.A., Rodríguez, M.A., Carranza, R.M., (2022) Pitting corrosion of Ni-Cr-Fe alloys at open circuit potential in chloride plus thiosulfate solutions, Corrosion Science, 198, 110121.
  • [44] Wasekar, N.P., (2022) The influence of grain size and triple junctions on corrosion behavior of nanocrystalline Ni and Ni-W alloy, Scripta Materialia, 213, 114604
  • [45] Yetim, T., Turalioglu, K., Taftali, M., Tekdir, H., Kovaci, H., Yetim, A.F., (2022) Synthesis and characterization of wear and corrosion resistant Ni-doped Al2O3 nanocomposite ceramic coatings by sol-gel method, Surf. Coat. Technol., 444, 128659.
  • [46] Çelik, A., Acar, M.T., Yetim, T., Kovacı, H., Yetim, A.F., (2020) Improving structural, tribological and electrochemical properties of Ti6Al4V alloy with B-doped TiO2 thin films, Tribology International, 146, 106210. [47] Çeliker, M., (2019) Conicraly Bağ ve Ysz İçerikli Termal Bariyer Kaplamaların Elektrokimyasal Korozyon Davranışlarının İncelenmesi, Yüksek Lisans Tezi, Bartın.
  • [48] Doğru, B. M., Yazıcı, B., (October, 06-09-2010)135 Poli(Pirol-Ko-O-Anisdin) Kaplı Alüminyumun %3,5 NaCl’deki Korozyon Davranışı, XII. International Corrosion Symposium, Eskişehir, Turkey.
  • [49] Bozkurt, Y.B., Çelik, A., (2022) Tailoring biodegration rate of AZ31 magnesium alloy Electrochimica Acta, 435, 141403.
  • [50] Jihui, D.Z., Hu, W.W., (2022) Hydroxyapatite film prepared by hydrothermal method on layered double hydroxides coated Mg Alloy and its corrosion resistance, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 647, 129075.
  • [51] Husien, V., Haakmann, S.F., Brinkbaumer, J., Ulbricht, M., (2022) Comparison of the nucleation and growth of a phosphate conversion coating on Zn–Al and Zn–Al–Mg coatings under the influence of a corrosion inhibitor film, Surface & Coatings Technology, 451, 129044.
  • [52] Wang, Y., Si, J., Si, Y., Shi, Z., (2023) Preparation and electrochemical corrosion performances of Zr-Ti-Ni-Cu-Be high-entropy bulk metallic glasses, Materials Science & Engineering B, 289, 116267.
  • [53] Hernandez, R., Alma, B., Jose, D.M., Juan, G.P., Jose, M.O., Domínguez, M.E., Mujica, V., (2022) Experimental and theoretical study on the effectiveness of ionic liquids as corrosion inhibitors, Computational and Theoretical Chemistry, 1210, 113640.
  • Dong Wei, B., Tianyi, L., Longjun, Z., Yueming, C., Yonggang, F., Hai, Z., Weijian, L., Sun, Y.Y., (2023) Clarifying the effect of a small amount of Cr content on the corrosion of Ni-Mo steel in tropical marine atmospheric environment, Corrosion Science, 210, 110813.
  • [55] Turalioglu, K., Taftalı, M., Tekdir, H., Çomaklı, O., Yazıcı, M., Yetim, T., Yetim, A.F., (2021) The tribological and corrosion properties of anodized Ti6Al4V/316L bimetallic structures manufactured by additive manufacturing, Surf. Coat. Technol., 405, 126635.
  • [56] Manazoğlu, M., (2013) Elektrokimyasal Yöntemle Nikelmolibden Alaşım Kaplamaların Üretimi ve Karakterizasyonu, Yüksek Lisans Tezi İstanbul.
  • [57] Küstü, C., (2008) Asitli Ortamdaki Korozyona Karşı Schıff Bazı Temelli Bazı Yeni İnhibitörlerin Geliştirilmesi, Yüksek Lisans Tezi.
  • [58] Duran, B., Çakmakcı, İ., Bereket, G., (06-09-2010) Bakır Üzerinde Pirol Ve N-Metil Pirolün Kopolimeri İle Çift Kaplamalarının Sentezi ve Korozyon Performanslarının Araştırılması, XII. International Corrosion Symposium, Eskişehir, Turkey.
  • [59] Akbarinezhad, E., Faridi, H.R., (2008) Surface Engineering, 24, 280-286.
  • [60] Zhao, X., Wang, J., Wang, Y., Kong, T., Zhong, L. And Zhang, W., (2007) Electrochemistry Communications, 9, 1394-1399.
  • [61] Hırayama, R. and Haruyama, S., (1991) Electrochemical Impedance for Degraded Coated Steel Having Pores, Corrosion, 47, 952-958.
  • [62] Akbarinezhad, E., Bahremandi, M., Faridi, H.R., Rezaei, F., (1988) Another approach for ranking and evaluating organic paint coatings via electrochemical impedance spectroscopy, Corrosion Science, 51, 356-363, 2009. 24.
  • [63] Çoban, K., (2006) Ketonik Bazlı Reçinelerle Paslanmaz Çelik ve Bakırın Korozyonunun Önlenmesi, Yüksek Lisans Tezi.
  • [64] Mutlu, R.N., Ateş, S., Mert, B.D., Yazıcı, B., (15-17 Ekim 2014) Sodyum Molibdat (Na2MoO4) Katkısının, 7075 Aluminyum Alaşımının Sülfürik Asit İçerisindeki Eloksal İşlemine ve Korozyon Davranışlarına Etkisi, 13. Uluslararası Korozyon Sempozyumu Bildiriler Kitabı, Fırat Üniversitesi, Elazığ, Türkiye.
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tuba Yetim 0000-0002-6237-6412

Erken Görünüm Tarihi 29 Mart 2023
Yayımlanma Tarihi 31 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 16 Sayı: 1

Kaynak Göster

APA Yetim, T. (2023). Electrochemical Behavior of CoO/Ag2O/TiO2 Ceramic and Composite Coated Selective Laser Manufactured 316L Stainless Steel. Erzincan University Journal of Science and Technology, 16(1), 239-257. https://doi.org/10.18185/erzifbed.1247007