Posaconazole Loading and Release Behavior in Surface-Modified Mesoporous Silica Nanoparticular System
Yıl 2023,
Cilt: 16 Sayı: 3, 615 - 632, 31.12.2023
Hilal Erkan
,
Ceren Keçeciler-emir
,
Cem Özel
,
Sevil Yücel
Öz
In conventional drug treatments, high toxic effects, low solubility, and low bioavailability of the active substance cause insufficient drug release in the target tissue and undesirable side effects in healthy tissue. Various drug delivery systems are utilized to eliminate these undesirable effects. Mesoporous silica nanoparticles (MSN) are biocompatible biomaterials that have a large surface area, high pore volume, and enhanced adsorption capacity. With MSN-mediated controlled drug release, the active substance concentration in the blood is kept within the desired therapeutic range. Posaconazole (PCZ) is an antifungal agent. Absorption of PCZ is difficult due to its low solubility in aqueous and acidic environments, low therapeutic effect and low bioavailability. The use of controlled drug release systems avoids these problems and facilitates the absorption and release of PCZ. In this study, it is aimed to enhance the PCZ adsorption and release by using a drug delivery system. MSNs were synthesized by sol-gel method, and surface modification of nanoparticles was achieved using (3-Aminopropyl) triethoxysilane (APTES). PCZ was loaded on APTES-modified MSN successfully. MSN, APTES-modified MSN and PCZ loaded APTES-modified MSN were characterized. Diffusion controlled release of PCZ was observed in drug release studies.
Destekleyen Kurum
Yildiz Technical University Scientific Research Projects Coordination Unit
Proje Numarası
FYL-2021-4105
Teşekkür
This work has been supported by Yildiz Technical University Scientific Research Projects Coordination Unit under project number FYL-2021-4105. Cem ÖZEL also thanks the financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under the BIDEB/2211-A Doctoral Domestic Success Scholarship Program with project number 1649B032000005. The author(s) would like to acknowledge Assoc. Prof. Dr. Serap Derman for providing zeta analysis.
Kaynakça
- Bajpai, A. K., Shukla, S. K., Bhanu, S., & Kankane, S. (2008). Responsive polymers in controlled drug delivery. In Progress in Polymer Science (Oxford) (Vol. 33, Issue 11, pp. 1088–1118). https://doi.org/10.1016/j.progpolymsci.2008.07.005
- Basaran Elalmis, Y., Yucel, S., & Aydin, I. (2021). Amorphous biogenic silica production and utilization in experimental dental composites: Effect of silica gel formation pH on silica and composite properties. Polymer Composites, 42(10), 5111–5124. https://doi.org/10.1002/pc.26209
- Costa, P., Manuel, J., & Lobô´´, S. (2001). Modeling and comparison of dissolution profiles. In European Journal of Pharmaceutical Sciences (Vol. 13). www.elsevier.nl/locate/ejps
- Croissant, J. G., Fatieiev, Y., Almalik, A., & Khashab, N. M. (2018). Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. In Advanced Healthcare Materials (Vol. 7, Issue 4). Wiley-VCH Verlag. https://doi.org/10.1002/adhm.201700831
- Danda, L. J. de A., Batista, L. de M., Melo, V. C. S., Soares Sobrinho, J. L., & Soares, M. F. de L. R. (2019). Combining amorphous solid dispersions for improved kinetic solubility of posaconazole simultaneously released from soluble PVP/VA64 and an insoluble ammonio methacrylate copolymer. European Journal of Pharmaceutical Sciences, 133, 79–85. https://doi.org/10.1016/j.ejps.2019.03.012
- Ebisike, K., Okoronkwo, A. E., & Alaneme, K. K. (2020). Synthesis and characterization of Chitosan–silica hybrid aerogel using sol-gel method. Journal of King Saud University - Science, 32(1), 550–554. https://doi.org/10.1016/j.jksus.2018.08.005
Figueirêdo, C. B. M., Nadvorny, D., de Medeiros Vieira, A. C. Q., Soares Sobrinho, J. L., Rolim Neto, P. J., Lee, P. I., & de La Roca Soares, M. F. (2017).
- Enhancement of dissolution rate through eutectic mixture and solid solution of posaconazole and benznidazole. International Journal of Pharmaceutics, 525(1), 32–42. https://doi.org/10.1016/j.ijpharm.2017.04.021
- Follmann, H. D. M., Oliveira, O. N., Lazarin-Bidóia, D., Nakamura, C. v., Huang, X., Asefa, T., & Silva, R. (2018). Multifunctional hybrid aerogels: Hyperbranched polymer-trapped mesoporous silica nanoparticles for sustained and prolonged drug release. Nanoscale, 10(4), 1704–1715. https://doi.org/10.1039/c7nr08464a
- Gomes, M. J., Martins, S., Ferreira, D., Segundo, M. A., & Reis, S. (2014). Lipid nanoparticles for topical and transdermal application for alopecia treatment: Development, physicochemical characterization, and in vitro release and penetration studies. International Journal of Nanomedicine, 9(1), 1231–1242. https://doi.org/10.2147/IJN.S45561
- Gounani, Z., Asadollahi, M. A., Pedersen, J. N., Lyngsø, J., Skov Pedersen, J., Arpanaei, A., & Meyer, R. L. (2019). Mesoporous silica nanoparticles carrying multiple antibiotics provide enhanced synergistic effect and improved biocompatibility. Colloids and Surfaces B: Biointerfaces, 175, 498–508. https://doi.org/10.1016/j.colsurfb.2018.12.035
- Gu, L., Zhang, A., Hou, K., Dai, C., Zhang, S., Liu, M., Song, C., & Guo, X. (2012). One-pot hydrothermal synthesis of mesoporous silica nanoparticles using formaldehyde as growth suppressant. Microporous and Mesoporous Materials, 152, 9–15. https://doi.org/10.1016/j.micromeso.2011.11.047
- He, Y., Luo, L., Liang, S., Long, M., & Xu, H. (2017). Amino-functionalized mesoporous silica nanoparticles as efficient carriers for anticancer drug delivery. Journal of Biomaterials Applications, 32(4), 524–532. https://doi.org/10.1177/0885328217724638
Karamikamkar, S., Abidli, A., Behzadfar, E., Rezaei, S., Naguib, H. E., & Park, C. B. (2019). The effect of graphene-nanoplatelets on gelation and structural integrity of a polyvinyltrimethoxysilane-based aerogel. RSC Advances, 9(20), 11503–11520. https://doi.org/10.1039/C9RA00994A
- Kwon, S., Singh, R. K., Perez, R. A., Neel, E. A. A., Kim, H. W., & Chrzanowski, W. (2013). Silica-based mesoporous nanoparticles for controlled drug delivery. In Journal of Tissue Engineering (Vol. 4, Issue 1, pp. 1–18). SAGE Publications Ltd. https://doi.org/10.1177/2041731413503357
- Lee, C. K., Chiang, A. S. T., & Tsay, C. S. (1996). The characterization of porous solids from gas adsorption measurements. Key Engineering Materials, 115, 21–44. https://doi.org/10.4028/www.scientific.net/kem.115.21
- Lisik, A., & Musiał, W. (2019). Conductomeric evaluation of the release kinetics of active substances from pharmaceutical preparations containing iron ions. Materials, 12(5). https://doi.org/10.3390/ma12050730
- Liu, X., & Che, S. (2015). Enhanced release of the poorly soluble drug itraconazole loaded in ordered mesoporous silica. Science China Chemistry, 58(3), 400–410. https://doi.org/10.1007/s11426-015-5333-x
- Mercorelli, B., Luganini, A., Celegato, M., Palù, G., Gribaudo, G., Lepesheva, G. I., & Loregian, A. (2020). The clinically approved antifungal drug posaconazole inhibits human cytomegalovirus replication. Antimicrobial Agents and Chemotherapy, 64(10). https://doi.org/10.1128/AAC.00056-20
- Mudie, D. M., Stewart, A. M., Biswas, N., Brodeur, T. J., Shepard, K. B., Smith, A., Morgen, M. M., Baumann, J. M., & Vodak, D. T. (2020). Novel High-Drug-Loaded Amorphous Dispersion Tablets of Posaconazole; in Vivo and in Vitro Assessment. Molecular Pharmaceutics, 17(12), 4463–4472. https://doi.org/10.1021/acs.molpharmaceut.0c00471
- Ren, X., Cheng, S., Liang, Y., Yu, X., Sheng, J., Wan, Y., Li, Y., Wan, J., Luo, Z., & Yang, X. (2020). Mesoporous silica nanospheres as nanocarriers for poorly soluble drug itraconazole with high loading capacity and enhanced bioavailability. Microporous and Mesoporous Materials, 305. https://doi.org/10.1016/j.micromeso.2020.110389
- Rizzi, F., Castaldo, R., Latronico, T., Lasala, P., Gentile, G., Lavorgna, M., Striccoli, M., Agostiano, A., Comparelli, R., Depalo, N., Curri, M. L., & Fanizza, E. (2021). High surface area mesoporous silica nanoparticles with tunable size in the sub-micrometer regime: Insights on the size and porosity control mechanisms. Molecules, 26(14). https://doi.org/10.3390/molecules26144247
- Rosenholm, J. M., Sahlgren, C., & Lindén, M. (2010). Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - Opportunities & challenges. In Nanoscale (Vol. 2, Issue 10, pp. 1870–1883). https://doi.org/10.1039/c0nr00156b
- Salah Eldeen, T., Ahmed, L., Atif, R., Yahya, I., Omara, A., & Eltayeb, M. (2019). Study the Using of Nanoparticles as Drug Delivery System Based on Mathematical Models for Controlled Release. In International Journal of Latest Technology in Engineering: Vol. VIII. www.ijltemas.in
- Santana, A. C. S. G. V., Nadvorny, D., da Rocha Passos, T. D., de La Roca Soares, M. F., & Soares-Sobrinho, J. L. (2019). Influence of cyclodextrin on posaconazole stability, release and activity: Improve the utility of the drug. Journal of Drug Delivery Science and Technology, 53. https://doi.org/10.1016/j.jddst.2019.101153
- Sarawade, P. B., Kim, J. K., Kim, H. K., & Kim, H. T. (2007). High specific surface area TEOS-based aerogels with large pore volume prepared at an ambient pressure. Applied Surface Science, 254(2), 574–579. https://doi.org/10.1016/j.apsusc.2007.06.063
- Shchipunov, Y. A. (2008). 3 Entrapment of Biopolymers into Sol-Gel-derived Silica Nanocomposites.
- Slowing, I. I., Trewyn, B. G., Giri, S., & Lin, V. S. Y. (2007). Mesoporous silica nanoparticles for drug delivery and biosensing applications. Advanced Functional Materials, 17(8), 1225–1236. https://doi.org/10.1002/adfm.200601191
- Slowing, I. I., Vivero-Escoto, J. L., Wu, C. W., & Lin, V. S. Y. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. In Advanced Drug Delivery Reviews (Vol. 60, Issue 11, pp. 1278–1288). https://doi.org/10.1016/j.addr.2008.03.012
- Sotomayor, F. J., Cychosz, K. A., & Thommes, M. (2018). Characterization of Micro/Mesoporous Materials by Physisorption: Concepts and Case Studies. In Acc. Mater. Surf. Res (Vol. 3, Issue 2).
- Szekalska, M., Citkowska, A., Wróblewska, M., & Winnicka, K. (2021). The impact of gelatin on the pharmaceutical characteristics of fucoidan microspheres with posaconazole. Materials, 14(15). https://doi.org/10.3390/ma14154087
- Szekalska, M., Wróblewska, M., Trofimiuk, M., Basa, A., & Winnicka, K. (2019). Alginate oligosaccharides affect mechanical properties and antifungal activity of alginate buccal films with posaconazole. Marine Drugs, 17(12). https://doi.org/10.3390/md17120692
- Tabasi, H., Mosavian, M. T. H., Darroudi, M., Khazaei, M., Hashemzadeh, A., & Sabouri, Z. (2022). Synthesis and characterization of amine-functionalized Fe3O4/Mesoporous Silica Nanoparticles (MSNs) as potential nanocarriers in drug delivery systems. Journal of Porous Materials. https://doi.org/10.1007/s10934-022-01259-5
- Tiryaki, E., Başaran Elalmış, Y., Karakuzu İkizler, B., & Yücel, S. (2020). Novel organic/inorganic hybrid nanoparticles as enzyme-triggered drug delivery systems: Dextran and Dextran aldehyde coated silica aerogels. Journal of Drug Delivery Science and Technology, 56. https://doi.org/10.1016/j.jddst.2020.101517
- Wang, L., Zhong, Y., Qian, C., Yang, D., Nie, J., & Ma, G. (2020). A natural polymer-based porous sponge with capillary-mimicking microchannels for rapid hemostasis. Acta Biomaterialia, 114, 193–205. https://doi.org/10.1016/J.ACTBIO.2020.07.043
- Wei, Y., Gao, L., Wang, L., Shi, L., Wei, E., Zhou, B., Zhou, L., & Ge, B. (2017). Polydopamine and peptide decorated doxorubicin-loaded mesoporous silica nanoparticles as a targeted drug delivery system for bladder cancer therapy. Drug Delivery, 24(1), 681–691. https://doi.org/10.1080/10717544.2017.1309475
- Yan, L., Zhang, J., Lee, C. S., & Chen, X. (2014). Micro- and nanotechnologies for intracellular delivery. In Small (Vol. 10, Issue 22, pp. 4487–4504). Wiley-VCH Verlag. https://doi.org/10.1002/smll.201401532
- Yang, B., Chen, Y., & Shi, J. (2019). Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. In Materials Science and Engineering R: Reports (Vol. 137, pp. 66–105). Elsevier Ltd. https://doi.org/10.1016/j.mser.2019.01.001
- Zaharudin, N. S., Mohamed Isa, E. D., Ahmad, H., Abdul Rahman, M. B., & Jumbri, K. (2020). Functionalized mesoporous silica nanoparticles templated by pyridinium ionic liquid for hydrophilic and hydrophobic drug release application. Journal of Saudi Chemical Society, 24(3), 289–302. https://doi.org/10.1016/j.jscs.2020.01.003
Yıl 2023,
Cilt: 16 Sayı: 3, 615 - 632, 31.12.2023
Hilal Erkan
,
Ceren Keçeciler-emir
,
Cem Özel
,
Sevil Yücel
Proje Numarası
FYL-2021-4105
Kaynakça
- Bajpai, A. K., Shukla, S. K., Bhanu, S., & Kankane, S. (2008). Responsive polymers in controlled drug delivery. In Progress in Polymer Science (Oxford) (Vol. 33, Issue 11, pp. 1088–1118). https://doi.org/10.1016/j.progpolymsci.2008.07.005
- Basaran Elalmis, Y., Yucel, S., & Aydin, I. (2021). Amorphous biogenic silica production and utilization in experimental dental composites: Effect of silica gel formation pH on silica and composite properties. Polymer Composites, 42(10), 5111–5124. https://doi.org/10.1002/pc.26209
- Costa, P., Manuel, J., & Lobô´´, S. (2001). Modeling and comparison of dissolution profiles. In European Journal of Pharmaceutical Sciences (Vol. 13). www.elsevier.nl/locate/ejps
- Croissant, J. G., Fatieiev, Y., Almalik, A., & Khashab, N. M. (2018). Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. In Advanced Healthcare Materials (Vol. 7, Issue 4). Wiley-VCH Verlag. https://doi.org/10.1002/adhm.201700831
- Danda, L. J. de A., Batista, L. de M., Melo, V. C. S., Soares Sobrinho, J. L., & Soares, M. F. de L. R. (2019). Combining amorphous solid dispersions for improved kinetic solubility of posaconazole simultaneously released from soluble PVP/VA64 and an insoluble ammonio methacrylate copolymer. European Journal of Pharmaceutical Sciences, 133, 79–85. https://doi.org/10.1016/j.ejps.2019.03.012
- Ebisike, K., Okoronkwo, A. E., & Alaneme, K. K. (2020). Synthesis and characterization of Chitosan–silica hybrid aerogel using sol-gel method. Journal of King Saud University - Science, 32(1), 550–554. https://doi.org/10.1016/j.jksus.2018.08.005
Figueirêdo, C. B. M., Nadvorny, D., de Medeiros Vieira, A. C. Q., Soares Sobrinho, J. L., Rolim Neto, P. J., Lee, P. I., & de La Roca Soares, M. F. (2017).
- Enhancement of dissolution rate through eutectic mixture and solid solution of posaconazole and benznidazole. International Journal of Pharmaceutics, 525(1), 32–42. https://doi.org/10.1016/j.ijpharm.2017.04.021
- Follmann, H. D. M., Oliveira, O. N., Lazarin-Bidóia, D., Nakamura, C. v., Huang, X., Asefa, T., & Silva, R. (2018). Multifunctional hybrid aerogels: Hyperbranched polymer-trapped mesoporous silica nanoparticles for sustained and prolonged drug release. Nanoscale, 10(4), 1704–1715. https://doi.org/10.1039/c7nr08464a
- Gomes, M. J., Martins, S., Ferreira, D., Segundo, M. A., & Reis, S. (2014). Lipid nanoparticles for topical and transdermal application for alopecia treatment: Development, physicochemical characterization, and in vitro release and penetration studies. International Journal of Nanomedicine, 9(1), 1231–1242. https://doi.org/10.2147/IJN.S45561
- Gounani, Z., Asadollahi, M. A., Pedersen, J. N., Lyngsø, J., Skov Pedersen, J., Arpanaei, A., & Meyer, R. L. (2019). Mesoporous silica nanoparticles carrying multiple antibiotics provide enhanced synergistic effect and improved biocompatibility. Colloids and Surfaces B: Biointerfaces, 175, 498–508. https://doi.org/10.1016/j.colsurfb.2018.12.035
- Gu, L., Zhang, A., Hou, K., Dai, C., Zhang, S., Liu, M., Song, C., & Guo, X. (2012). One-pot hydrothermal synthesis of mesoporous silica nanoparticles using formaldehyde as growth suppressant. Microporous and Mesoporous Materials, 152, 9–15. https://doi.org/10.1016/j.micromeso.2011.11.047
- He, Y., Luo, L., Liang, S., Long, M., & Xu, H. (2017). Amino-functionalized mesoporous silica nanoparticles as efficient carriers for anticancer drug delivery. Journal of Biomaterials Applications, 32(4), 524–532. https://doi.org/10.1177/0885328217724638
Karamikamkar, S., Abidli, A., Behzadfar, E., Rezaei, S., Naguib, H. E., & Park, C. B. (2019). The effect of graphene-nanoplatelets on gelation and structural integrity of a polyvinyltrimethoxysilane-based aerogel. RSC Advances, 9(20), 11503–11520. https://doi.org/10.1039/C9RA00994A
- Kwon, S., Singh, R. K., Perez, R. A., Neel, E. A. A., Kim, H. W., & Chrzanowski, W. (2013). Silica-based mesoporous nanoparticles for controlled drug delivery. In Journal of Tissue Engineering (Vol. 4, Issue 1, pp. 1–18). SAGE Publications Ltd. https://doi.org/10.1177/2041731413503357
- Lee, C. K., Chiang, A. S. T., & Tsay, C. S. (1996). The characterization of porous solids from gas adsorption measurements. Key Engineering Materials, 115, 21–44. https://doi.org/10.4028/www.scientific.net/kem.115.21
- Lisik, A., & Musiał, W. (2019). Conductomeric evaluation of the release kinetics of active substances from pharmaceutical preparations containing iron ions. Materials, 12(5). https://doi.org/10.3390/ma12050730
- Liu, X., & Che, S. (2015). Enhanced release of the poorly soluble drug itraconazole loaded in ordered mesoporous silica. Science China Chemistry, 58(3), 400–410. https://doi.org/10.1007/s11426-015-5333-x
- Mercorelli, B., Luganini, A., Celegato, M., Palù, G., Gribaudo, G., Lepesheva, G. I., & Loregian, A. (2020). The clinically approved antifungal drug posaconazole inhibits human cytomegalovirus replication. Antimicrobial Agents and Chemotherapy, 64(10). https://doi.org/10.1128/AAC.00056-20
- Mudie, D. M., Stewart, A. M., Biswas, N., Brodeur, T. J., Shepard, K. B., Smith, A., Morgen, M. M., Baumann, J. M., & Vodak, D. T. (2020). Novel High-Drug-Loaded Amorphous Dispersion Tablets of Posaconazole; in Vivo and in Vitro Assessment. Molecular Pharmaceutics, 17(12), 4463–4472. https://doi.org/10.1021/acs.molpharmaceut.0c00471
- Ren, X., Cheng, S., Liang, Y., Yu, X., Sheng, J., Wan, Y., Li, Y., Wan, J., Luo, Z., & Yang, X. (2020). Mesoporous silica nanospheres as nanocarriers for poorly soluble drug itraconazole with high loading capacity and enhanced bioavailability. Microporous and Mesoporous Materials, 305. https://doi.org/10.1016/j.micromeso.2020.110389
- Rizzi, F., Castaldo, R., Latronico, T., Lasala, P., Gentile, G., Lavorgna, M., Striccoli, M., Agostiano, A., Comparelli, R., Depalo, N., Curri, M. L., & Fanizza, E. (2021). High surface area mesoporous silica nanoparticles with tunable size in the sub-micrometer regime: Insights on the size and porosity control mechanisms. Molecules, 26(14). https://doi.org/10.3390/molecules26144247
- Rosenholm, J. M., Sahlgren, C., & Lindén, M. (2010). Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - Opportunities & challenges. In Nanoscale (Vol. 2, Issue 10, pp. 1870–1883). https://doi.org/10.1039/c0nr00156b
- Salah Eldeen, T., Ahmed, L., Atif, R., Yahya, I., Omara, A., & Eltayeb, M. (2019). Study the Using of Nanoparticles as Drug Delivery System Based on Mathematical Models for Controlled Release. In International Journal of Latest Technology in Engineering: Vol. VIII. www.ijltemas.in
- Santana, A. C. S. G. V., Nadvorny, D., da Rocha Passos, T. D., de La Roca Soares, M. F., & Soares-Sobrinho, J. L. (2019). Influence of cyclodextrin on posaconazole stability, release and activity: Improve the utility of the drug. Journal of Drug Delivery Science and Technology, 53. https://doi.org/10.1016/j.jddst.2019.101153
- Sarawade, P. B., Kim, J. K., Kim, H. K., & Kim, H. T. (2007). High specific surface area TEOS-based aerogels with large pore volume prepared at an ambient pressure. Applied Surface Science, 254(2), 574–579. https://doi.org/10.1016/j.apsusc.2007.06.063
- Shchipunov, Y. A. (2008). 3 Entrapment of Biopolymers into Sol-Gel-derived Silica Nanocomposites.
- Slowing, I. I., Trewyn, B. G., Giri, S., & Lin, V. S. Y. (2007). Mesoporous silica nanoparticles for drug delivery and biosensing applications. Advanced Functional Materials, 17(8), 1225–1236. https://doi.org/10.1002/adfm.200601191
- Slowing, I. I., Vivero-Escoto, J. L., Wu, C. W., & Lin, V. S. Y. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. In Advanced Drug Delivery Reviews (Vol. 60, Issue 11, pp. 1278–1288). https://doi.org/10.1016/j.addr.2008.03.012
- Sotomayor, F. J., Cychosz, K. A., & Thommes, M. (2018). Characterization of Micro/Mesoporous Materials by Physisorption: Concepts and Case Studies. In Acc. Mater. Surf. Res (Vol. 3, Issue 2).
- Szekalska, M., Citkowska, A., Wróblewska, M., & Winnicka, K. (2021). The impact of gelatin on the pharmaceutical characteristics of fucoidan microspheres with posaconazole. Materials, 14(15). https://doi.org/10.3390/ma14154087
- Szekalska, M., Wróblewska, M., Trofimiuk, M., Basa, A., & Winnicka, K. (2019). Alginate oligosaccharides affect mechanical properties and antifungal activity of alginate buccal films with posaconazole. Marine Drugs, 17(12). https://doi.org/10.3390/md17120692
- Tabasi, H., Mosavian, M. T. H., Darroudi, M., Khazaei, M., Hashemzadeh, A., & Sabouri, Z. (2022). Synthesis and characterization of amine-functionalized Fe3O4/Mesoporous Silica Nanoparticles (MSNs) as potential nanocarriers in drug delivery systems. Journal of Porous Materials. https://doi.org/10.1007/s10934-022-01259-5
- Tiryaki, E., Başaran Elalmış, Y., Karakuzu İkizler, B., & Yücel, S. (2020). Novel organic/inorganic hybrid nanoparticles as enzyme-triggered drug delivery systems: Dextran and Dextran aldehyde coated silica aerogels. Journal of Drug Delivery Science and Technology, 56. https://doi.org/10.1016/j.jddst.2020.101517
- Wang, L., Zhong, Y., Qian, C., Yang, D., Nie, J., & Ma, G. (2020). A natural polymer-based porous sponge with capillary-mimicking microchannels for rapid hemostasis. Acta Biomaterialia, 114, 193–205. https://doi.org/10.1016/J.ACTBIO.2020.07.043
- Wei, Y., Gao, L., Wang, L., Shi, L., Wei, E., Zhou, B., Zhou, L., & Ge, B. (2017). Polydopamine and peptide decorated doxorubicin-loaded mesoporous silica nanoparticles as a targeted drug delivery system for bladder cancer therapy. Drug Delivery, 24(1), 681–691. https://doi.org/10.1080/10717544.2017.1309475
- Yan, L., Zhang, J., Lee, C. S., & Chen, X. (2014). Micro- and nanotechnologies for intracellular delivery. In Small (Vol. 10, Issue 22, pp. 4487–4504). Wiley-VCH Verlag. https://doi.org/10.1002/smll.201401532
- Yang, B., Chen, Y., & Shi, J. (2019). Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. In Materials Science and Engineering R: Reports (Vol. 137, pp. 66–105). Elsevier Ltd. https://doi.org/10.1016/j.mser.2019.01.001
- Zaharudin, N. S., Mohamed Isa, E. D., Ahmad, H., Abdul Rahman, M. B., & Jumbri, K. (2020). Functionalized mesoporous silica nanoparticles templated by pyridinium ionic liquid for hydrophilic and hydrophobic drug release application. Journal of Saudi Chemical Society, 24(3), 289–302. https://doi.org/10.1016/j.jscs.2020.01.003