Araştırma Makalesi
BibTex RIS Kaynak Göster

The Efficiency of Chamomile in Crystal Violet Dye Removal Processes

Yıl 2023, Cilt: 16 Sayı: 3, 687 - 713, 31.12.2023
https://doi.org/10.18185/erzifbed.1324916

Öz

Bu çalışmada papatyanın adsorplama özellikleri incelenmiştir. Crystal Violet (CV) boya adsorpsiyon proseslerinde adsorban olarak, işlenmemiş papatya (Ch) ve fosforik asit (H3PO4) (Ch-H3PO4) kullanılarak hazırlanan aktif karbon formu kullanılmıştır. Adsorbanların yüzey yapılarını gözlemlemek için Taramalı Elektron Mikroskobu (SEM) analizleri kullanılmıştır. Adsorpsiyon etkinlikleri pH (1-7), zaman (0-300 dk), başlangıç boya konsantrasyonu (10-50 ppm), adsorban miktarı (0,5-2 g/L) ve sıcaklığa (25-45 °C) bağlı olarak her bir adsorban için incelenmiş ve birbiriyle karşılaştırılmıştır. Adsorpsiyon proseslerinin 300 dk’ da dengeye ulaştığı belirlenmiştir. Her iki proseste de en yüksek giderimler pH 7' de elde edilmiştir. Tüm değişen konsantrasyonlarda, her iki adsorban da yüksek giderim yüzdelerine ulaşmıştır. Ayrıca değişen adsorban dozajının, her iki adsorbanın kapasite değerlerini büyük ölçüde etkilediği gözlenmiştir. Kinetik çalışmalarda proseslerin yalancı ikinci dereceden kinetik model ile açıklandığı ve izoterm çalışmalarının Freundlich izotermi ile uyumlu olduğu görülmüştür. Termodinamik çalışmalarında ΔH0 değerleri Ch ve Ch-H3PO4 için sırasıyla 20,69 ve -34,87 kJ mol-1 olarak hesaplanmıştır. Negatif ve pozitif ΔH0 değerleri sırasıyla ekzotermik ve endotermik doğayı gösterir. Ch ve Ch-H3PO4 için ΔS0 değerleri sırasıyla 76,52 ve -95,55 J mol-1K-1 olarak bulunmuştur. Negatif ΔG0 değerleri proseslerin kendiliğindenliğini açıklamaktadır. Sonuç olarak, işlenmemiş papatyanın CV boya gideriminde etkili olduğu, H3PO4 kullanılarak aktif karbon hazırlanması ile etkinliğinin arttığı belirlenmiştir.

Kaynakça

  • [1] Li, S., Dai, M., Ali, I., Bian, H., & Peng, C., (2023) A new idea for efficient copper recovery from wastewater by electrodeposition: Adsorption pretreatment, Desalination, 562, 116683.
  • [2] Medri, V., Papa, E., Landi, E., Maggetti, C., Pinelli, D., & Frascari, D., (2022) Ammonium removal and recovery from municipal wastewater by ion exchange using a metakaolin K-based geopolymer, Water Research, 225, 119203.
  • [3] Shourije, S. M. J. S., Dehghan, P., Bahrololoom, M. E., Cobley, A. J., Vitry, V., Azar, G. T. P., ... & Mesbah, M., (2023) Using fish scales as a new biosorbent for adsorption of nickel and copper ions from wastewater and investigating the effects of electric and magnetic fields on the adsorption process, Chemosphere, 137829.
  • [4] Oh, M., Lee, K., Jeon, M. K., Foster, R. I., & Lee, C. H., (2023) Chemical precipitation–based treatment of acidic wastewater generated by chemical decontamination of radioactive concrete, Journal of Environmental Chemical Engineering, 110306.
  • [5] da Silva, A. F. V., da Silva, J., Vicente, R., Ambrosi, A., Zin, G., Di Luccio, M., & de Oliveira, J. V., (2023) Recent advances in surface modification using polydopamine for the development of photocatalytic membranes for oily wastewater treatment, Journal of Water Process Engineering, 53, 103743.
  • [6] de Andrade, J. R., Oliveira, M. F., da Silva, M. G., & Vieira, M. G., (2018) Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: a review, Industrial & Engineering Chemistry Research, 57(9), 3103-3127.
  • [7] Wang, B., Lan, J., Bo, C., Gong, B., & Ou, J., (2023) Adsorption of heavy metal onto biomass-derived activated carbon, RSC advances, 13(7), 4275-4302.
  • [8] Zahid, M., Nadeem, N., Tahir, N., Majeed, M. I., Naqvi, S. A. R., & Hussain, T., (2020) Multifunctional hybrid nanomaterials for sustainable agri-food and ecosystems. Kamel A. Abd-Elsalam (Ed.), Hybrid nanomaterials for water purification (pp. 155-188). Elsevier, Netherlands.
  • [9] Ho, S., (2022) Low-Cost Adsorbents for the Removal of Phenol/Phenolics, Pesticides, and Dyes from Wastewater Systems: A Review, Water, 14(20), 3203.
  • [10] Raji, Y., Nadi, A., Mechnou, I., Saadouni, M., Cherkaoui, O., & Zyade, S., (2023) High adsorption capacities of crystal violet dye by low-cost activated carbon prepared from Moroccan Moringa oleifera wastes: Characterization, adsorption and mechanism study, Diamond and Related Materials, 135, 109834.
  • [11] Sah, A., Naseef, P. P., Kuruniyan, M. S., Jain, G. K., Zakir, F., & Aggarwal, G., (2022) A Comprehensive Study of Therapeutic Applications of Chamomile, Pharmaceuticals, 15(10), 1284.
  • [12] Bokelmann, J. M., (2022) Medicinal Herbs in Primary Care. Jean M. Bokelmann (Ed.), 35-Chamomile, German (Matricaria recutita/chamomilla) and Chamomile, Roman (Chamaemelum nobile): Flower (pp. 269-277). Elsevier, Netherlands.
  • [13] Nemecz, G., (1999) Chamomile, Journal of Modern Pharmacy, 6(8), 32.
  • [14] Ross, S. M., (2008) Chamomile: a spoonful of medicine, Holistic Nursing Practice, 22(1), 56-57.
  • [15] Kolanos, R., & Stice, S. A., (2021) Nutraceuticals. Ramesh C. Gupta, Rajiv Lall and Ajay Srivastava(Ed.), German chamomile (pp. 757-772). Academic Press, Elsevier, Netherlands.
  • [16] Chaves, P. F. P., Iacomini, M., & Cordeiro, L. M., (2019) Chemical characterization of fructooligosaccharides, inulin and structurally diverse polysaccharides from chamomile tea, Carbohydrate polymers, 214, 269-275.
  • [17] Dar, M. A., Anas, M., Kajal, K., Kumar, S., & Kaushik, G. (2023) Adsorptive removal of crystal violet dye by Azadirachta indica (neem) sawdust: A low-cost bio-sorbent, Acta Ecologica Sinica, https://doi.org/10.1016/j.chnaes.2023.02.011.
  • [18] Reza, M. S., Yun, C. S., Afroze, S., Radenahmad, N., Bakar, M. S. A., Saidur, R., ... & Azad, A. K. (2020) Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review, Arab Journal of Basic and Applied Sciences, 27(1), 208-238.
  • [19] Neme, I., Gonfa, G., & Masi, C. (2022) Activated carbon from biomass precursors using phosphoric acid: A review, Heliyon, 8, e11940.
  • [20] Gerçel, Ö., & Gerçel, H. F. (2007) Adsorption of lead (II) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida, Chemical engineering journal, 132(1-3), 289-297.
  • [21] Xue, H., Wang, X., Xu, Q., Dhaouadi, F., Sellaoui, L., Seliem, M. K., ... & Li, Q. (2022) Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: A comparative study by experimental and advanced modeling analysis, Chemical engineering journal, 430, 132801.
  • [22] García-Mateos, F. J., Ruiz-Rosas, R., Marqués, M. D., Cotoruelo, L. M., Rodríguez-Mirasol, J., & Cordero, T. (2015) Removal of paracetamol on biomass-derived activated carbon: Modeling the fixed bed breakthrough curves using batch adsorption experiments, Chemical engineering journal, 279, 18-30.
  • [23] Liou, T. H. (2010) Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation, Chemical Engineering Journal, 158(2), 129-142.
  • [24] Jiang, D., Li, H., Cheng, X., Ling, Q., Chen, H., Barati, B., ... & Wang, S. (2023) A mechanism study of methylene blue adsorption on seaweed biomass derived carbon: From macroscopic to microscopic scale, Process Safety and Environmental Protection, 172, 1132-1143.
  • [25] Valdés-Rodríguez, E. M., Mendoza-Castillo, D. I., Reynel-Ávila, H. E., Aguayo-Villarreal, I. A., & Bonilla-Petriciolet, A. (2022) Activated carbon manufacturing via alternative Mexican lignocellulosic biomass and their application in water treatment: Preparation conditions, surface chemistry analysis and heavy metal adsorption properties, Chemical Engineering Research and Design, 187, 9-26.
  • [26] Kırbıyık, Ç., Pütün, A. E., & Pütün, E. (2017) Equilibrium, kinetic, and thermodynamic studies of the adsorption of Fe (III) metal ions and 2, 4-dichlorophenoxyacetic acid onto biomass-based activated carbon by ZnCl2 activation, Surfaces and Interfaces, 8, 182-192.
  • [27] Karagöz, S., Tay, T., Ucar, S., & Erdem, M. (2008) Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption, Bioresource technology, 99(14), 6214-6222.
  • [28] Rezazadeh, N., Danesh, S., & Eftekhari, M., (2023) Investigation the adsorption mechanism of a non-ionic surfactant on graphene oxide and its derivatives (kinetic, isotherm curves, thermodynamic, and effect of salts studies), Environmental Nanotechnology, Monitoring & Management, 20, 100819.
  • [29] Zhao, S., Zhan, Y., Wan, X., He, S., Yang, X., Hu, J., & Zhang, G., (2020) Selective and efficient adsorption of anionic dyes by core/shell magnetic MWCNTs nano-hybrid constructed through facial polydopamine tailored graft polymerization: Insight of adsorption mechanism, kinetic, isotherm and thermodynamic study, Journal of Molecular Liquids, 319, 114289.
  • [30] Ghasemi, N., Ghasemi, M., Moazeni, S., Ghasemi, P., Alharbi, N. S., Gupta, V. K., ... & Tkachev, A. G., (2018) Zn (II) removal by amino-functionalized magnetic nanoparticles: Kinetics, isotherm, and thermodynamic aspects of adsorption, Journal of industrial and engineering chemistry, 62, 302-310.
  • [31] Zhang, X., Yuan, N., Xu, S., Li, Y., & Wang, Q. (2022) Efficient adsorptive elimination of organic pollutants from aqueous solutions on ZIF-8/MWCNTs-COOH nanoadsorbents: Adsorption kinetics, isotherms, and thermodynamic study, Journal of Industrial and Engineering Chemistry, 111, 155-167.
  • [32] De Castro, M. L. F. A., Abad, M. L. B., Sumalinog, D. A. G., Abarca, R. R. M., Paoprasert, P., & de Luna, M. D. G., (2018) Adsorption of methylene blue dye and Cu (II) ions on EDTA-modified bentonite: isotherm, kinetic and thermodynamic studies, Sustainable Environment Research, 28(5), 197-205.
  • [33] Mbarki, F., Selmi, T., Kesraoui, A., & Seffen, M., (2022) Low-cost activated carbon preparation from Corn stigmata fibers chemically activated using H3PO4, ZnCl2 and KOH: Study of methylene blue adsorption, stochastic isotherm and fractal kinetic, Industrial Crops and Products, 178, 114546.
  • [34] Mani, D., Elango, D., Priyadharsan, A., Al-Humaid, L. A., Al-Dahmash, N. D., Ragupathy, S., ... & Ahn, Y. H., (2023) Groundnut shell chemically treated with KOH to prepare inexpensive activated carbon: Methylene blue adsorption and equilibrium isotherm studies, Environmental Research, 231, 116026.
  • [35] Mandal, S., Calderon, J., Marpu, S. B., Omary, M. A., & Shi, S. Q., (2021) Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies, Journal of Contaminant Hydrology, 243, 103869.
  • [36] Ahmad, M. A., Eusoff, M. A., Oladoye, P. O., Adegoke, K. A., & Bello, O. S., (2020) Statistical optimization of Remazol Brilliant Blue R dye adsorption onto activated carbon prepared from pomegranate fruit peel, Chemical Data Collections, 28, 100426.
  • [37] Rasli, N. I., Basri, H., & Harun, Z. (2020) Zinc oxide from aloe vera extract: two-level factorial screening of biosynthesis parameters, Heliyon, 6(1), e03156.
  • [38] Fanoro, O. T., Parani, S., Maluleke, R., Lebepe, T. C., Varghese, R. J., Mgedle, N., ... & Oluwafemi, O. S. (2021) Biosynthesis of smaller-sized platinum nanoparticles using the leaf extract of combretum erythrophyllum and its antibacterial activities, Antibiotics, 10(11), 1275.
  • [39] Md Salim, R., Asik, J., & Sarjadi, M. S. (2021) Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark, Wood Science and Technology, 55, 295-313.
  • [40] Fernandes, J., Reboredo, F. H., Luis, I., Silva, M. M., Simões, M. M., Lidon, F. C., & Ramalho, J. C. (2022) Elemental Composition of Commercial Herbal Tea Plants and Respective Infusions, Plants, 11(11), 1412. [41] Prajapati, C., Jolly, A., & Ravulapalli, S. (2020) Bio inspired synthesis of silver nanoparticles and its applications to spin–orbit interactions of light, Nano Express, 1(3), 030031.
  • [42] Faramitha, Y., Barori, F. R., Dimawarnita, F., Aqoma, H., Nugraha, A. F., & Ferdiansyah, A. (2023) Fabrication of glutathione-modified gold nanoparticles as 3-chloropropane-1, 2-diol sensor, Communications in Science and Technology, 8(1), 82-86.
  • [43] Goetze, J., & Weckhuysen, B. M. (2018) Spatiotemporal coke formation over zeolite ZSM-5 during the methanol-to-olefins process as studied with operando UV-vis spectroscopy: a comparison between H-ZSM-5 and Mg-ZSM-5, Catalysis Science & Technology, 8(6), 1632-1644.
  • [44] Santalucia, R., Vacca, T., Cesano, F., Martra, G., Pellegrino, F., & Scarano, D. (2020) Few-layered MoS2 nanoparticles covering anatase TiO2 nanosheets: Comparison between ex situ and in situ synthesis approaches, Applied Sciences, 11(1), 143.
  • [45] de Ménorval, L. C., Chaqroune, A., Coq, B., & Figueras, F. (1997) Characterization of mono-and bi-metallic platinum catalysts using CO FTIR spectroscopy Size effects and topological segregation, Journal of the Chemical Society, Faraday Transactions, 93(20), 3715-3720.
  • [46] Wu, W. C., Liao, L. F., Lien, C. F., & Lin, J. L. (2001) FTIR study of adsorption, thermal reactions and photochemistry of benzene on powdered TiO2, Physical Chemistry Chemical Physics, 3(19), 4456-4461.
  • [47] Gaitán-Alvarez, J., Berrocal, A., Mantanis, G. I., Moya, R., & Araya, F. (2020) Acetylation of tropical hardwood species from forest plantations in Costa Rica: an FTIR spectroscopic analysis, Journal of Wood Science, 66(1), 49.
  • [48] Leksawasdi, N., Chaiyaso, T., Rachtanapun, P., Thanakkasaranee, S., Jantrawut, P., Ruksiriwanich, W., ... & Jantanasakulwong, K. (2021) Corn starch reactive blending with latex from natural rubber using Na+ ions augmented carboxymethyl cellulose as a crosslinking agent, Scientific Reports, 11(1), 19250.
  • [49] Mutaillifu, P., Bobakulov, K., Abuduwaili, A., Huojiaaihemaiti, H., Nuerxiati, R., Aisa, H. A., & Yili, A. (2020) Structural characterization and antioxidant activities of a water soluble polysaccharide isolated from Glycyrrhiza glabra, International journal of biological macromolecules, 144, 751-759.
  • [50] Santiago Cintrón, M., & Hinchliffe, D. J. (2015) FT-IR examination of the development of secondary cell wall in cotton fibers, Fibers, 3(1), 30-40.
  • [51] Britto, A. S. F., Binoj, J. S., Mansingh, B. B., & Jass, P. N. (2023) Extensive characterization of novel cellulosic biofiber from leaf sheath of Licuala grandis for biocomposite applications, Biomass Conversion and Biorefinery, 1-10.
  • [52] Szmatoła, M., Chrobak, J., Grabowski, R., Iłowska, J., Woch, J., Szwach, I., ... & Grymel, M. (2018) Spectroscopic methods in the evaluation of modified vegetable base oils from Crambe abyssinica, Molecules, 23(12), 3243.
  • [53] Guzmán-Mendoza, J. J., Chávez-Flores, D., Montes-Fonseca, S. L., González-Horta, C., Orrantia-Borunda, E., & Sánchez-Ramírez, B. (2022) A Novel method for carbon nanotube functionalization using immobilized candida antarctica lipase, Nanomaterials, 12(9), 1465.
  • [54] Geminiani, L., Campione, F. P., Corti, C., Luraschi, M., Motella, S., Recchia, S., & Rampazzi, L. (2022) Differentiating between Natural and Modified Cellulosic Fibres Using ATR-FTIR Spectroscopy, Heritage, 5(4), 4114-4139.
  • [55] Lu, Y., Liu, L., Shen, D., Yang, C., & Zhang, L. (2004) Infrared study on in situ polymerization of zinc dimethacrylate in poly (α‐octylene‐co‐ethylene) elastomer, Polymer international, 53(6), 802-808.
  • [56] Singh, O., Khanam, Z., Misra, N., & Srivastava, M. K. (2011) Chamomile (Matricaria chamomilla L.): an overview, Pharmacognosy reviews, 5(9), 82.
  • [57] Liu, Q., Ye, M., Yu, G., & Han, A. (2023) Synthesis of octavinyl polyhedral oligomeric silsesquioxane (ovi‐POSS) based organic/inorganic hybrid resin microspheres for rapid and efficient oils absorption, Journal of Applied Polymer Science, 140(6), e53429.
  • [58] Mohtashami, S., Asasian Kolur, N., Kaghazchi, T., Asadi-Kesheh, R., & Soleimani, M. (2018) Optimization of sugarcane bagasse activation to achieve adsorbent with high affinity towards phenol, Turkish Journal of Chemistry, 42(6), 1720-1735.
  • [59] Kang, E. J., Baek, Y. M., Hahm, E., Lee, S. H., Pham, X. H., Noh, M. S., ... & Jun, B. H. (2019) Functionalized β-cyclodextrin immobilized on Ag-embedded silica nanoparticles as a drug carrier, International Journal of Molecular Sciences, 20(2), 315.
  • [60] Puziy, A. M., Poddubnaya, O. I., Sobiesiak, M., & Gawdzik, B. (2017) Assessment of the structural evolution of polyimide-derived carbons obtained by phosphoric acid activation using Fourier transform infrared and Raman spectroscopy, Adsorption Science & Technology, 35(5-6), 403-412.
  • [61] Li, Y., Zhang, X., Yang, R., Li, G., & Hu, C. (2015) The role of H3PO4 in the preparation of activated carbon from NaOH-treated rice husk residue, RSC advances, 5(41), 32626-32636.
  • [62] Sajjadi, B., Chen, W. Y., Mattern, D. L., Hammer, N., & Dorris, A. (2020) Low-temperature acoustic-based activation of biochar for enhanced removal of heavy metals, Journal of Water Process Engineering, 34, 101166. [63] Harja, M., Buema, G., Lupu, N., Chiriac, H., Herea, D. D., & Ciobanu, G., (2020) Fly ash coated with magnetic materials: Improved adsorbent for Cu (II) removal from wastewater, Materials, 14(1), 63.
  • [64] Ewis, D., Mahmud, N., Benamor, A., Ba-Abbad, M. M., Nasser, M., & El-Naas, M., (2022) Enhanced Removal of Diesel Oil Using New Magnetic Bentonite-Based Adsorbents Combined with Different Carbon Sources, Water, Air, & Soil Pollution, 233(6), 195.
  • [65] Jawad, A. H., Saber, S. E. M., Abdulhameed, A. S., Farhan, A. M., ALOthman, Z. A., & Wilson, L. D., (2023) Characterization and applicability of the natural Iraqi bentonite clay for toxic cationic dye removal: Adsorption kinetic and isotherm study, Journal of King Saud University-Science, 35(4), 102630.
  • [66] Atif, M., Haider, H. Z., Bongiovanni, R., Fayyaz, M., Razzaq, T., & Gul, S., (2022) Physisorption and chemisorption trends in surface modification of carbon black, Surfaces and Interfaces, 102080.
  • [67] Debnath, S., & Das, R., (2023) Strong adsorption of CV dye by Ni ferrite nanoparticles for waste water purification: Fits well the pseudo second order kinetic and Freundlich isotherm model, Ceramics International, 49(10), 16199-16215.
  • [68] Khamwichit, A., Dechapanya, W., & Dechapanya, W., (2022) Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell, Heliyon, 8(6), e09610.
  • [69] Akdemir, M., Isik, B., Cakar, F., & Cankurtaran, O., (2022) Comparison of the adsorption efficiency of cationic (Crystal Violet) and anionic (Congo Red) dyes on Valeriana officinalis roots: Isotherms, kinetics, thermodynamic studies, and error functions, Materials Chemistry and Physics, 291, 126763.
  • [70] Nasiri, A., Rajabi, S., Amiri, A., Fattahizade, M., Hasani, O., Lalehzari, A., & Hashemi, M., (2022) Adsorption of tetracycline using CuCoFe2O4@ Chitosan as a new and green magnetic nanohybrid adsorbent from aqueous solutions: Isotherm, kinetic and thermodynamic study, Arabian Journal of Chemistry, 15(8), 104014.
  • [71] Farooq, S., Al Maani, A. H., Naureen, Z., Hussain, J., Siddiqa, A., & Al Harrasi, A., (2022) Synthesis and characterization of copper oxide-loaded activated carbon nanocomposite: Adsorption of methylene blue, kinetic, isotherm, and thermodynamic study, Journal of Water Process Engineering, 47, 102692.
  • [72] Kumbhar, P., Narale, D., Bhosale, R., Jambhale, C., Kim, J. H., & Kolekar, S., (2022) Synthesis of tea waste/Fe3O4 magnetic composite (TWMC) for efficient adsorption of crystal violet dye: Isotherm, kinetic and thermodynamic studies, Journal of Environmental Chemical Engineering, 10(3), 107893.
  • [73] Bassam, R., El Alouani, M., Maissara, J., Jarmouni, N., Belhabra, M., Chbihi, M. E. M., & Belaaouad, S., (2022) Investigation of competitive adsorption and desorption of heavy metals from aqueous solution using raw rock: Characterization kinetic, isotherm, and thermodynamic, Materials Today: Proceedings, 52, 158-165.
  • [74] Sadeghi, M., Moradian, M., Tayebi, H. A., & Mirabi, A., (2023) Removal of Penicillin G from aqueous medium by PPI@ SBA-15/ZIF-8 super adsorbent: Adsorption isotherm, thermodynamic, and kinetic studies, Chemosphere, 311, 136887.
  • [75] Song, X., Ma, X., & Zeng, Y., (2017) Adsorption equilibrium and thermodynamics of CO2 and CH4 on carbon molecular sieves, Applied Surface Science, 396, 870-878.
  • [76] Ghosh, K., Bar, N., Biswas, A. B., & Das, S. K. (2021) Elimination of crystal violet from synthetic medium by adsorption using unmodified and acid-modified eucalyptus leaves with MPR and GA application, Sustainable Chemistry and Pharmacy, 19, 100370.
  • [77] Ali, N. S., Jabbar, N. M., Alardhi, S. M., Majdi, H. S., & Albayati, T. M. (2022) Adsorption of methyl violet dye onto a prepared bio-adsorbent from date seeds: Isotherm, kinetics, and thermodynamic studies, Heliyon, 8(8), e10276.
  • [78] Oloo, C. M., Onyari, J. M., Wanyonyi, W. C., Wabomba, J. N., & Muinde, V. M. (2020) Adsorptive removal of hazardous crystal violet dye form aqueous solution using Rhizophora mucronata stem-barks: Equilibrium and kinetics studies, Environmental Chemistry and Ecotoxicology, 2, 64-72.
  • [79] Dabagh, A., Bagui, A., Abali, M. H., Aziam, R., Chiban, M., Sinan, F., & Zerbet, M. (2021) Adsorption of Crystal Violet from aqueous solution onto eco-friendly native Carpobrotus edulis plant, Materials Today: Proceedings, 37, 3980-3986.
  • [80] Senthilkumaar, S., Kalaamani, P., & Subburaam, C. V. (2006) Liquid phase adsorption of crystal violet onto activated carbons derived from male flowers of coconut tree, Journal of hazardous materials, 136(3), 800-808.
  • [81] Ji, Q., & Li, H. (2021) High surface area activated carbon derived from chitin for efficient adsorption of Crystal Violet, Diamond and Related Materials, 118, 108516.
  • [82] Rani, S., & Chaudhary, S. (2022) Adsorption of methylene blue and crystal violet dye from waste water using Citrus limetta peel as an adsorbent, Materials Today: Proceedings, 60, 336-344.
  • [83] Yusuff, A. S., Ajayi, O. A., & Popoola, L. T. (2021) Application of Taguchi design approach to parametric optimization of adsorption of crystal violet dye by activated carbon from poultry litter, Scientific African, 13, e00850.
  • [84] Kamath, A. A., Nayak, N. G., & Sagar, R. (2021) Coconut flower sheath derived activated charcoal as efficient and cost effective adsorbent for crystal violet dye removal, Inorganic Chemistry Communications, 134, 109077.
Yıl 2023, Cilt: 16 Sayı: 3, 687 - 713, 31.12.2023
https://doi.org/10.18185/erzifbed.1324916

Öz

Kaynakça

  • [1] Li, S., Dai, M., Ali, I., Bian, H., & Peng, C., (2023) A new idea for efficient copper recovery from wastewater by electrodeposition: Adsorption pretreatment, Desalination, 562, 116683.
  • [2] Medri, V., Papa, E., Landi, E., Maggetti, C., Pinelli, D., & Frascari, D., (2022) Ammonium removal and recovery from municipal wastewater by ion exchange using a metakaolin K-based geopolymer, Water Research, 225, 119203.
  • [3] Shourije, S. M. J. S., Dehghan, P., Bahrololoom, M. E., Cobley, A. J., Vitry, V., Azar, G. T. P., ... & Mesbah, M., (2023) Using fish scales as a new biosorbent for adsorption of nickel and copper ions from wastewater and investigating the effects of electric and magnetic fields on the adsorption process, Chemosphere, 137829.
  • [4] Oh, M., Lee, K., Jeon, M. K., Foster, R. I., & Lee, C. H., (2023) Chemical precipitation–based treatment of acidic wastewater generated by chemical decontamination of radioactive concrete, Journal of Environmental Chemical Engineering, 110306.
  • [5] da Silva, A. F. V., da Silva, J., Vicente, R., Ambrosi, A., Zin, G., Di Luccio, M., & de Oliveira, J. V., (2023) Recent advances in surface modification using polydopamine for the development of photocatalytic membranes for oily wastewater treatment, Journal of Water Process Engineering, 53, 103743.
  • [6] de Andrade, J. R., Oliveira, M. F., da Silva, M. G., & Vieira, M. G., (2018) Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: a review, Industrial & Engineering Chemistry Research, 57(9), 3103-3127.
  • [7] Wang, B., Lan, J., Bo, C., Gong, B., & Ou, J., (2023) Adsorption of heavy metal onto biomass-derived activated carbon, RSC advances, 13(7), 4275-4302.
  • [8] Zahid, M., Nadeem, N., Tahir, N., Majeed, M. I., Naqvi, S. A. R., & Hussain, T., (2020) Multifunctional hybrid nanomaterials for sustainable agri-food and ecosystems. Kamel A. Abd-Elsalam (Ed.), Hybrid nanomaterials for water purification (pp. 155-188). Elsevier, Netherlands.
  • [9] Ho, S., (2022) Low-Cost Adsorbents for the Removal of Phenol/Phenolics, Pesticides, and Dyes from Wastewater Systems: A Review, Water, 14(20), 3203.
  • [10] Raji, Y., Nadi, A., Mechnou, I., Saadouni, M., Cherkaoui, O., & Zyade, S., (2023) High adsorption capacities of crystal violet dye by low-cost activated carbon prepared from Moroccan Moringa oleifera wastes: Characterization, adsorption and mechanism study, Diamond and Related Materials, 135, 109834.
  • [11] Sah, A., Naseef, P. P., Kuruniyan, M. S., Jain, G. K., Zakir, F., & Aggarwal, G., (2022) A Comprehensive Study of Therapeutic Applications of Chamomile, Pharmaceuticals, 15(10), 1284.
  • [12] Bokelmann, J. M., (2022) Medicinal Herbs in Primary Care. Jean M. Bokelmann (Ed.), 35-Chamomile, German (Matricaria recutita/chamomilla) and Chamomile, Roman (Chamaemelum nobile): Flower (pp. 269-277). Elsevier, Netherlands.
  • [13] Nemecz, G., (1999) Chamomile, Journal of Modern Pharmacy, 6(8), 32.
  • [14] Ross, S. M., (2008) Chamomile: a spoonful of medicine, Holistic Nursing Practice, 22(1), 56-57.
  • [15] Kolanos, R., & Stice, S. A., (2021) Nutraceuticals. Ramesh C. Gupta, Rajiv Lall and Ajay Srivastava(Ed.), German chamomile (pp. 757-772). Academic Press, Elsevier, Netherlands.
  • [16] Chaves, P. F. P., Iacomini, M., & Cordeiro, L. M., (2019) Chemical characterization of fructooligosaccharides, inulin and structurally diverse polysaccharides from chamomile tea, Carbohydrate polymers, 214, 269-275.
  • [17] Dar, M. A., Anas, M., Kajal, K., Kumar, S., & Kaushik, G. (2023) Adsorptive removal of crystal violet dye by Azadirachta indica (neem) sawdust: A low-cost bio-sorbent, Acta Ecologica Sinica, https://doi.org/10.1016/j.chnaes.2023.02.011.
  • [18] Reza, M. S., Yun, C. S., Afroze, S., Radenahmad, N., Bakar, M. S. A., Saidur, R., ... & Azad, A. K. (2020) Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review, Arab Journal of Basic and Applied Sciences, 27(1), 208-238.
  • [19] Neme, I., Gonfa, G., & Masi, C. (2022) Activated carbon from biomass precursors using phosphoric acid: A review, Heliyon, 8, e11940.
  • [20] Gerçel, Ö., & Gerçel, H. F. (2007) Adsorption of lead (II) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida, Chemical engineering journal, 132(1-3), 289-297.
  • [21] Xue, H., Wang, X., Xu, Q., Dhaouadi, F., Sellaoui, L., Seliem, M. K., ... & Li, Q. (2022) Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: A comparative study by experimental and advanced modeling analysis, Chemical engineering journal, 430, 132801.
  • [22] García-Mateos, F. J., Ruiz-Rosas, R., Marqués, M. D., Cotoruelo, L. M., Rodríguez-Mirasol, J., & Cordero, T. (2015) Removal of paracetamol on biomass-derived activated carbon: Modeling the fixed bed breakthrough curves using batch adsorption experiments, Chemical engineering journal, 279, 18-30.
  • [23] Liou, T. H. (2010) Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation, Chemical Engineering Journal, 158(2), 129-142.
  • [24] Jiang, D., Li, H., Cheng, X., Ling, Q., Chen, H., Barati, B., ... & Wang, S. (2023) A mechanism study of methylene blue adsorption on seaweed biomass derived carbon: From macroscopic to microscopic scale, Process Safety and Environmental Protection, 172, 1132-1143.
  • [25] Valdés-Rodríguez, E. M., Mendoza-Castillo, D. I., Reynel-Ávila, H. E., Aguayo-Villarreal, I. A., & Bonilla-Petriciolet, A. (2022) Activated carbon manufacturing via alternative Mexican lignocellulosic biomass and their application in water treatment: Preparation conditions, surface chemistry analysis and heavy metal adsorption properties, Chemical Engineering Research and Design, 187, 9-26.
  • [26] Kırbıyık, Ç., Pütün, A. E., & Pütün, E. (2017) Equilibrium, kinetic, and thermodynamic studies of the adsorption of Fe (III) metal ions and 2, 4-dichlorophenoxyacetic acid onto biomass-based activated carbon by ZnCl2 activation, Surfaces and Interfaces, 8, 182-192.
  • [27] Karagöz, S., Tay, T., Ucar, S., & Erdem, M. (2008) Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption, Bioresource technology, 99(14), 6214-6222.
  • [28] Rezazadeh, N., Danesh, S., & Eftekhari, M., (2023) Investigation the adsorption mechanism of a non-ionic surfactant on graphene oxide and its derivatives (kinetic, isotherm curves, thermodynamic, and effect of salts studies), Environmental Nanotechnology, Monitoring & Management, 20, 100819.
  • [29] Zhao, S., Zhan, Y., Wan, X., He, S., Yang, X., Hu, J., & Zhang, G., (2020) Selective and efficient adsorption of anionic dyes by core/shell magnetic MWCNTs nano-hybrid constructed through facial polydopamine tailored graft polymerization: Insight of adsorption mechanism, kinetic, isotherm and thermodynamic study, Journal of Molecular Liquids, 319, 114289.
  • [30] Ghasemi, N., Ghasemi, M., Moazeni, S., Ghasemi, P., Alharbi, N. S., Gupta, V. K., ... & Tkachev, A. G., (2018) Zn (II) removal by amino-functionalized magnetic nanoparticles: Kinetics, isotherm, and thermodynamic aspects of adsorption, Journal of industrial and engineering chemistry, 62, 302-310.
  • [31] Zhang, X., Yuan, N., Xu, S., Li, Y., & Wang, Q. (2022) Efficient adsorptive elimination of organic pollutants from aqueous solutions on ZIF-8/MWCNTs-COOH nanoadsorbents: Adsorption kinetics, isotherms, and thermodynamic study, Journal of Industrial and Engineering Chemistry, 111, 155-167.
  • [32] De Castro, M. L. F. A., Abad, M. L. B., Sumalinog, D. A. G., Abarca, R. R. M., Paoprasert, P., & de Luna, M. D. G., (2018) Adsorption of methylene blue dye and Cu (II) ions on EDTA-modified bentonite: isotherm, kinetic and thermodynamic studies, Sustainable Environment Research, 28(5), 197-205.
  • [33] Mbarki, F., Selmi, T., Kesraoui, A., & Seffen, M., (2022) Low-cost activated carbon preparation from Corn stigmata fibers chemically activated using H3PO4, ZnCl2 and KOH: Study of methylene blue adsorption, stochastic isotherm and fractal kinetic, Industrial Crops and Products, 178, 114546.
  • [34] Mani, D., Elango, D., Priyadharsan, A., Al-Humaid, L. A., Al-Dahmash, N. D., Ragupathy, S., ... & Ahn, Y. H., (2023) Groundnut shell chemically treated with KOH to prepare inexpensive activated carbon: Methylene blue adsorption and equilibrium isotherm studies, Environmental Research, 231, 116026.
  • [35] Mandal, S., Calderon, J., Marpu, S. B., Omary, M. A., & Shi, S. Q., (2021) Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies, Journal of Contaminant Hydrology, 243, 103869.
  • [36] Ahmad, M. A., Eusoff, M. A., Oladoye, P. O., Adegoke, K. A., & Bello, O. S., (2020) Statistical optimization of Remazol Brilliant Blue R dye adsorption onto activated carbon prepared from pomegranate fruit peel, Chemical Data Collections, 28, 100426.
  • [37] Rasli, N. I., Basri, H., & Harun, Z. (2020) Zinc oxide from aloe vera extract: two-level factorial screening of biosynthesis parameters, Heliyon, 6(1), e03156.
  • [38] Fanoro, O. T., Parani, S., Maluleke, R., Lebepe, T. C., Varghese, R. J., Mgedle, N., ... & Oluwafemi, O. S. (2021) Biosynthesis of smaller-sized platinum nanoparticles using the leaf extract of combretum erythrophyllum and its antibacterial activities, Antibiotics, 10(11), 1275.
  • [39] Md Salim, R., Asik, J., & Sarjadi, M. S. (2021) Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark, Wood Science and Technology, 55, 295-313.
  • [40] Fernandes, J., Reboredo, F. H., Luis, I., Silva, M. M., Simões, M. M., Lidon, F. C., & Ramalho, J. C. (2022) Elemental Composition of Commercial Herbal Tea Plants and Respective Infusions, Plants, 11(11), 1412. [41] Prajapati, C., Jolly, A., & Ravulapalli, S. (2020) Bio inspired synthesis of silver nanoparticles and its applications to spin–orbit interactions of light, Nano Express, 1(3), 030031.
  • [42] Faramitha, Y., Barori, F. R., Dimawarnita, F., Aqoma, H., Nugraha, A. F., & Ferdiansyah, A. (2023) Fabrication of glutathione-modified gold nanoparticles as 3-chloropropane-1, 2-diol sensor, Communications in Science and Technology, 8(1), 82-86.
  • [43] Goetze, J., & Weckhuysen, B. M. (2018) Spatiotemporal coke formation over zeolite ZSM-5 during the methanol-to-olefins process as studied with operando UV-vis spectroscopy: a comparison between H-ZSM-5 and Mg-ZSM-5, Catalysis Science & Technology, 8(6), 1632-1644.
  • [44] Santalucia, R., Vacca, T., Cesano, F., Martra, G., Pellegrino, F., & Scarano, D. (2020) Few-layered MoS2 nanoparticles covering anatase TiO2 nanosheets: Comparison between ex situ and in situ synthesis approaches, Applied Sciences, 11(1), 143.
  • [45] de Ménorval, L. C., Chaqroune, A., Coq, B., & Figueras, F. (1997) Characterization of mono-and bi-metallic platinum catalysts using CO FTIR spectroscopy Size effects and topological segregation, Journal of the Chemical Society, Faraday Transactions, 93(20), 3715-3720.
  • [46] Wu, W. C., Liao, L. F., Lien, C. F., & Lin, J. L. (2001) FTIR study of adsorption, thermal reactions and photochemistry of benzene on powdered TiO2, Physical Chemistry Chemical Physics, 3(19), 4456-4461.
  • [47] Gaitán-Alvarez, J., Berrocal, A., Mantanis, G. I., Moya, R., & Araya, F. (2020) Acetylation of tropical hardwood species from forest plantations in Costa Rica: an FTIR spectroscopic analysis, Journal of Wood Science, 66(1), 49.
  • [48] Leksawasdi, N., Chaiyaso, T., Rachtanapun, P., Thanakkasaranee, S., Jantrawut, P., Ruksiriwanich, W., ... & Jantanasakulwong, K. (2021) Corn starch reactive blending with latex from natural rubber using Na+ ions augmented carboxymethyl cellulose as a crosslinking agent, Scientific Reports, 11(1), 19250.
  • [49] Mutaillifu, P., Bobakulov, K., Abuduwaili, A., Huojiaaihemaiti, H., Nuerxiati, R., Aisa, H. A., & Yili, A. (2020) Structural characterization and antioxidant activities of a water soluble polysaccharide isolated from Glycyrrhiza glabra, International journal of biological macromolecules, 144, 751-759.
  • [50] Santiago Cintrón, M., & Hinchliffe, D. J. (2015) FT-IR examination of the development of secondary cell wall in cotton fibers, Fibers, 3(1), 30-40.
  • [51] Britto, A. S. F., Binoj, J. S., Mansingh, B. B., & Jass, P. N. (2023) Extensive characterization of novel cellulosic biofiber from leaf sheath of Licuala grandis for biocomposite applications, Biomass Conversion and Biorefinery, 1-10.
  • [52] Szmatoła, M., Chrobak, J., Grabowski, R., Iłowska, J., Woch, J., Szwach, I., ... & Grymel, M. (2018) Spectroscopic methods in the evaluation of modified vegetable base oils from Crambe abyssinica, Molecules, 23(12), 3243.
  • [53] Guzmán-Mendoza, J. J., Chávez-Flores, D., Montes-Fonseca, S. L., González-Horta, C., Orrantia-Borunda, E., & Sánchez-Ramírez, B. (2022) A Novel method for carbon nanotube functionalization using immobilized candida antarctica lipase, Nanomaterials, 12(9), 1465.
  • [54] Geminiani, L., Campione, F. P., Corti, C., Luraschi, M., Motella, S., Recchia, S., & Rampazzi, L. (2022) Differentiating between Natural and Modified Cellulosic Fibres Using ATR-FTIR Spectroscopy, Heritage, 5(4), 4114-4139.
  • [55] Lu, Y., Liu, L., Shen, D., Yang, C., & Zhang, L. (2004) Infrared study on in situ polymerization of zinc dimethacrylate in poly (α‐octylene‐co‐ethylene) elastomer, Polymer international, 53(6), 802-808.
  • [56] Singh, O., Khanam, Z., Misra, N., & Srivastava, M. K. (2011) Chamomile (Matricaria chamomilla L.): an overview, Pharmacognosy reviews, 5(9), 82.
  • [57] Liu, Q., Ye, M., Yu, G., & Han, A. (2023) Synthesis of octavinyl polyhedral oligomeric silsesquioxane (ovi‐POSS) based organic/inorganic hybrid resin microspheres for rapid and efficient oils absorption, Journal of Applied Polymer Science, 140(6), e53429.
  • [58] Mohtashami, S., Asasian Kolur, N., Kaghazchi, T., Asadi-Kesheh, R., & Soleimani, M. (2018) Optimization of sugarcane bagasse activation to achieve adsorbent with high affinity towards phenol, Turkish Journal of Chemistry, 42(6), 1720-1735.
  • [59] Kang, E. J., Baek, Y. M., Hahm, E., Lee, S. H., Pham, X. H., Noh, M. S., ... & Jun, B. H. (2019) Functionalized β-cyclodextrin immobilized on Ag-embedded silica nanoparticles as a drug carrier, International Journal of Molecular Sciences, 20(2), 315.
  • [60] Puziy, A. M., Poddubnaya, O. I., Sobiesiak, M., & Gawdzik, B. (2017) Assessment of the structural evolution of polyimide-derived carbons obtained by phosphoric acid activation using Fourier transform infrared and Raman spectroscopy, Adsorption Science & Technology, 35(5-6), 403-412.
  • [61] Li, Y., Zhang, X., Yang, R., Li, G., & Hu, C. (2015) The role of H3PO4 in the preparation of activated carbon from NaOH-treated rice husk residue, RSC advances, 5(41), 32626-32636.
  • [62] Sajjadi, B., Chen, W. Y., Mattern, D. L., Hammer, N., & Dorris, A. (2020) Low-temperature acoustic-based activation of biochar for enhanced removal of heavy metals, Journal of Water Process Engineering, 34, 101166. [63] Harja, M., Buema, G., Lupu, N., Chiriac, H., Herea, D. D., & Ciobanu, G., (2020) Fly ash coated with magnetic materials: Improved adsorbent for Cu (II) removal from wastewater, Materials, 14(1), 63.
  • [64] Ewis, D., Mahmud, N., Benamor, A., Ba-Abbad, M. M., Nasser, M., & El-Naas, M., (2022) Enhanced Removal of Diesel Oil Using New Magnetic Bentonite-Based Adsorbents Combined with Different Carbon Sources, Water, Air, & Soil Pollution, 233(6), 195.
  • [65] Jawad, A. H., Saber, S. E. M., Abdulhameed, A. S., Farhan, A. M., ALOthman, Z. A., & Wilson, L. D., (2023) Characterization and applicability of the natural Iraqi bentonite clay for toxic cationic dye removal: Adsorption kinetic and isotherm study, Journal of King Saud University-Science, 35(4), 102630.
  • [66] Atif, M., Haider, H. Z., Bongiovanni, R., Fayyaz, M., Razzaq, T., & Gul, S., (2022) Physisorption and chemisorption trends in surface modification of carbon black, Surfaces and Interfaces, 102080.
  • [67] Debnath, S., & Das, R., (2023) Strong adsorption of CV dye by Ni ferrite nanoparticles for waste water purification: Fits well the pseudo second order kinetic and Freundlich isotherm model, Ceramics International, 49(10), 16199-16215.
  • [68] Khamwichit, A., Dechapanya, W., & Dechapanya, W., (2022) Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell, Heliyon, 8(6), e09610.
  • [69] Akdemir, M., Isik, B., Cakar, F., & Cankurtaran, O., (2022) Comparison of the adsorption efficiency of cationic (Crystal Violet) and anionic (Congo Red) dyes on Valeriana officinalis roots: Isotherms, kinetics, thermodynamic studies, and error functions, Materials Chemistry and Physics, 291, 126763.
  • [70] Nasiri, A., Rajabi, S., Amiri, A., Fattahizade, M., Hasani, O., Lalehzari, A., & Hashemi, M., (2022) Adsorption of tetracycline using CuCoFe2O4@ Chitosan as a new and green magnetic nanohybrid adsorbent from aqueous solutions: Isotherm, kinetic and thermodynamic study, Arabian Journal of Chemistry, 15(8), 104014.
  • [71] Farooq, S., Al Maani, A. H., Naureen, Z., Hussain, J., Siddiqa, A., & Al Harrasi, A., (2022) Synthesis and characterization of copper oxide-loaded activated carbon nanocomposite: Adsorption of methylene blue, kinetic, isotherm, and thermodynamic study, Journal of Water Process Engineering, 47, 102692.
  • [72] Kumbhar, P., Narale, D., Bhosale, R., Jambhale, C., Kim, J. H., & Kolekar, S., (2022) Synthesis of tea waste/Fe3O4 magnetic composite (TWMC) for efficient adsorption of crystal violet dye: Isotherm, kinetic and thermodynamic studies, Journal of Environmental Chemical Engineering, 10(3), 107893.
  • [73] Bassam, R., El Alouani, M., Maissara, J., Jarmouni, N., Belhabra, M., Chbihi, M. E. M., & Belaaouad, S., (2022) Investigation of competitive adsorption and desorption of heavy metals from aqueous solution using raw rock: Characterization kinetic, isotherm, and thermodynamic, Materials Today: Proceedings, 52, 158-165.
  • [74] Sadeghi, M., Moradian, M., Tayebi, H. A., & Mirabi, A., (2023) Removal of Penicillin G from aqueous medium by PPI@ SBA-15/ZIF-8 super adsorbent: Adsorption isotherm, thermodynamic, and kinetic studies, Chemosphere, 311, 136887.
  • [75] Song, X., Ma, X., & Zeng, Y., (2017) Adsorption equilibrium and thermodynamics of CO2 and CH4 on carbon molecular sieves, Applied Surface Science, 396, 870-878.
  • [76] Ghosh, K., Bar, N., Biswas, A. B., & Das, S. K. (2021) Elimination of crystal violet from synthetic medium by adsorption using unmodified and acid-modified eucalyptus leaves with MPR and GA application, Sustainable Chemistry and Pharmacy, 19, 100370.
  • [77] Ali, N. S., Jabbar, N. M., Alardhi, S. M., Majdi, H. S., & Albayati, T. M. (2022) Adsorption of methyl violet dye onto a prepared bio-adsorbent from date seeds: Isotherm, kinetics, and thermodynamic studies, Heliyon, 8(8), e10276.
  • [78] Oloo, C. M., Onyari, J. M., Wanyonyi, W. C., Wabomba, J. N., & Muinde, V. M. (2020) Adsorptive removal of hazardous crystal violet dye form aqueous solution using Rhizophora mucronata stem-barks: Equilibrium and kinetics studies, Environmental Chemistry and Ecotoxicology, 2, 64-72.
  • [79] Dabagh, A., Bagui, A., Abali, M. H., Aziam, R., Chiban, M., Sinan, F., & Zerbet, M. (2021) Adsorption of Crystal Violet from aqueous solution onto eco-friendly native Carpobrotus edulis plant, Materials Today: Proceedings, 37, 3980-3986.
  • [80] Senthilkumaar, S., Kalaamani, P., & Subburaam, C. V. (2006) Liquid phase adsorption of crystal violet onto activated carbons derived from male flowers of coconut tree, Journal of hazardous materials, 136(3), 800-808.
  • [81] Ji, Q., & Li, H. (2021) High surface area activated carbon derived from chitin for efficient adsorption of Crystal Violet, Diamond and Related Materials, 118, 108516.
  • [82] Rani, S., & Chaudhary, S. (2022) Adsorption of methylene blue and crystal violet dye from waste water using Citrus limetta peel as an adsorbent, Materials Today: Proceedings, 60, 336-344.
  • [83] Yusuff, A. S., Ajayi, O. A., & Popoola, L. T. (2021) Application of Taguchi design approach to parametric optimization of adsorption of crystal violet dye by activated carbon from poultry litter, Scientific African, 13, e00850.
  • [84] Kamath, A. A., Nayak, N. G., & Sagar, R. (2021) Coconut flower sheath derived activated charcoal as efficient and cost effective adsorbent for crystal violet dye removal, Inorganic Chemistry Communications, 134, 109077.
Toplam 82 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Separasyon Bilimi, Malzemelerin Yapısı ve Dinamikleri, Malzeme Karekterizasyonu
Bölüm Makaleler
Yazarlar

Sahra Dandıl 0000-0001-9724-5597

Erken Görünüm Tarihi 25 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 16 Sayı: 3

Kaynak Göster

APA Dandıl, S. (2023). The Efficiency of Chamomile in Crystal Violet Dye Removal Processes. Erzincan University Journal of Science and Technology, 16(3), 687-713. https://doi.org/10.18185/erzifbed.1324916