Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 17 Sayı: 2, 426 - 444, 31.08.2024
https://doi.org/10.18185/erzifbed.1465583

Öz

Kaynakça

  • [1] B. Dai, C. Liu, S. Liu, D. Wang, Q. Wang, T. Zou, X. Zhou, Life cycle techno-enviroeconomic assessment of dual-temperature evaporation transcritical CO2 hightemperature heat pump systems for industrial waste heat recovery, Appl. Therm.Eng. 219 (2023), 119570.
  • [2] H. Jouhara, N. Nieto, B. Egilegor, J. Zuazua, E. Gonz´alez, I. Yebra, A. Igesias, B. Delpech, S. Almahmoud, D. Brough, J. Malinauskaite, Waste heat recovery solution based on a heat pipe heat exchanger for the aluminium die casting industry, Energy 266 (2023), 126459.
  • [3] Y. Zhang, L. Yu, K. Cui, H. Wang, T. Fu, Carbon capture and storage technology by steel-making slags: recent progress and future challenges, Chem. Eng. J. 455(2023), 140552.
  • [4] Cheng, H., Liu, Y., Cao, F., Zhang, Q., & Ouyang, J. (2022). Integration of an electronic thermoelectric material with ionogels to harvest heat from both temperature gradient and temperature fluctuation. Chemical Engineering Journal, 450, 138433.
  • [5] Shan, K., Luo, Q., Yun, P., Huang, L., Huang, K., Cao, B., ... & Jiang, H. (2023). All-day working photovoltaic cooling system for simultaneous generation of water and electricity by latent heat recycling. Chemical Engineering Journal, 457, 141283.
  • [6] Luo, Q., He, A., Xu, S., Miao, M., Liu, T., Cao, B., ... & Jiang, H. (2023). Utilization of low-grade heat for desalination and electricity generation through thermal osmosis energy conversion process. Chemical Engineering Journal, 452, 139560.
  • [7] C. Ononogbo, E.C. Nwosu, N.R. Nwakuba, G.N. Nwaji, O.C. Nwufo, O. C. Chukwuezie, M.M. Chukwu, E.E. Anyanwu, Opportunities of waste heat recovery from various sources: Review of technologies and implementation, Heliyon. (2023).
  • [8] Mahmoudi A, Fazli M, Morad MR. A recent review of waste heat recovery by Organic Rankine Cycle. Appl Therm Eng 2018;143:660–75.
  • [9] Koç A, Yağlı H, Koç Y, Uğurlu İ. Dünyada ve Türkiye’de Enerji Görünümünün Genel Değerlendirilmesi. Eng Machin Mag 2018;59(692).
  • [10] Achinas S, Euverink GJW. Elevated biogas production from the anaerobic co-digestion of farmhouse waste: Insight into the process performance and kinetics.Waste Manage Res 2019. 0734242X19873383.
  • [11] Achinas S, Krooneman J, Euverink GJW. Enhanced biogas production from the anaerobic batch treatment of banana peels. Engineering 2019.
  • [12] Bao J, Zhao L. A review of working fluid and expander selections for organic Rankine cycle. Renew Sustain Energy Rev 2013;24:325–42.
  • [13] İnternet: IEA, World Energy Outlook 2023, URL: World Energy Outlook 2023 – Analysis - IEA, Son Erişim Tarihi: 21.02.2024.
  • [14] Yağlı, H., Koç, Y., Koç, A., Görgülü, A., & Tandiroğlu, A. (2016). Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic Rankine cycle (ORC) for biogas fuelled combined heat and power (CHP) engine exhaust gas waste heat. Energy, 111, 923-932.
  • [15] Yagli, H., Koc, A., Karakus, C., & Koc, Y. (2016). Comparison of toluene and cyclohexane as a working fluid of an organic Rankine cycle used for reheat furnace waste heat recovery. International Journal of Exergy, 19(3), 420-438.
  • [16] Takleh, H. R., & Zare, V. (2019). Employing thermoelectric generator and booster compressor for performance improvement of a geothermal driven combined power and ejector-refrigeration cycle. Energy Conversion and Management, 186, 120-130.
  • [17] Takleh, H. R., & Zare, V. (2019). Performance improvement of ejector expansion refrigeration cycles employing a booster compressor using different refrigerants: Thermodynamic analysis and optimization. International Journal of Refrigeration, 101, 56-70.
  • [18] Bao, J., & Zhao, L. (2013). A review of working fluid and expander selections for organic Rankine cycle. Renewable and sustainable energy reviews, 24, 325-342
  • [19] Chen, H., Goswami, D. Y., & Stefanakos, E. K. (2010). A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable and sustainable energy reviews, 14(9), 3059-3067.
  • [20] Sprouse III, C., & Depcik, C. (2013). Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery. Applied thermal engineering, 51(1-2), 711-722.
  • [21] Yang, W., Feng, H., Chen, L., & Ge, Y. (2023). Power and efficiency optimizations of a simple irreversible supercritical organic Rankine cycle. Energy, 278, 127755.
  • [22] Quoilin, S., Orosz, M., Hemond, H., & Lemort, V. (2011). Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation. Solar energy, 85(5), 955-966.
  • [23] Calise, F., Capuozzo, C and Vanoli, L. (2013). Design and parametric optimization of an Organic Rankine Cycle powered by solar energy. American Journal of Engineering and Applied Sciences, 6(2), 178-204.
  • [24] Liu, X., Hu, G., & Zeng, Z. (2022). Potential of biomass processing using digester in arrangement with a Brayton cycle, a Kalina cycle, and a multi-effect desalination; thermodynamic/environmental/financial study and MOPSO-based optimization. Energy, 261, 125222.
  • [25] Liu, X., Hu, G., & Zeng, Z. (2023). Performance characterization and multi-objective optimization of integrating a biomass-fueled brayton cycle, a kalina cycle, and an organic rankine cycle with a claude hydrogen liquefaction cycle. Energy, 263, 125535.
  • [26] Yu, W., Liu, C., Ban, X., Li, Z., Yan, T., Xin, L., & Wang, S. (2024). A novel method for predicting the thermal stabilization temperature of organic Rankine cycle system working fluids based on transition state theory. Energy, 130378.
  • [27] Feng, J., Cheng, X., Wang, H., Zhao, L., Wang, H., & Dong, H. (2024). Performance analysis and multi-objective optimization of organic Rankine cycle for low-grade sinter waste heat recovery. Case Studies in Thermal Engineering, 53, 103915.
  • [28] Akkaya, A. V., & Sahin, B. (2009). A study on performance of solid oxide fuel cell‐organic Rankine cycle combined system. International Journal of Energy Research, 33(6), 553-564.
  • [29] Wang, Z. Q., Zhou, N. J., Guo, J., & Wang, X. Y. (2012). Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat. Energy, 40(1), 107-115.
  • [30] Xu, W., Deng, S., Zhao, L., Su, W., Zhang, Y., Li, S., & Ma, M. (2018). How to quantitatively describe the role of the pure working fluids in subcritical organic Rankine cycle: A limitation on efficiency. Energy conversion and management, 172, 316-327.
  • [31] Hærvig, J., Sørensen, K., & Condra, T. J. (2016). Guidelines for optimal selection of working fluid for an organic Rankine cycle in relation to waste heat recovery. Energy, 96, 592-602.
  • [32] Jeong, Y. S., Park, K., Jang, Y. C., & Moon, S. J. (2024). Optimal working-fluid selection for organic Rankine cycle integrated into a combined cycle cogeneration plant. Journal of Mechanical Science and Technology, 38(4), 2073-2080.
  • [33] Elmaihy, A., Rashad, A., Elweteedy, A., & Nessim, W. (2023). Energy and exergy analyses for organic Rankine cycle driven by cooling water of passenger car engine using sixteen working fluids. Energy Conversion and Management: X, 20, 100415.
  • [34] Cengel, Y.A. and Boles,, M.A. (2008) Thermodynamics: an engineering approach, McGraw-Hill Inc., 6th. Ed., New York, 2008.
  • [35] Dincer, I., & Rosen, M. A. (2013). Exergy: energy, environment and sustainable development. Elsevier, 2nd. Ed., 2013.
  • [36] Kotas, T. J. (2013). The exergy method of thermal plant analysis. Elsevier.
  • [37] Safari, F., & Dincer, I. (2019). Development and analysis of a novel biomass-based integrated system for multigeneration with hydrogen production. International Journal of Hydrogen Energy, 44(7), 3511-3526.
  • [38] Yağlı, H., Karakuş, C., Koç, Y., Çevik, M., Uğurlu, İ., & Koç, A. (2019). Designing and exergetic analysis of a solar power tower system for Iskenderun region. International Journal of Exergy, 28(1), 96-112.
  • [39] Koç, Y., Yağlı, H., & Koç, A. (2019). Exergy Analysis and Performance Improvement of a Subcritical/Supercritical Organic Rankine Cycle (ORC) for Exhaust Gas Waste Heat Recovery in a Biogas Fuelled Combined Heat and Power (CHP) Engine Through the Use of Regeneration. Energies, 12(4), 575.
  • [40] Koc, Y., Kose, O., & Yagli, H. (2019). Exergy analysis of a natural gas fuelled gas turbine based cogeneration cycle. Int. J. Exergy, 30, 103-125.
  • [41] Ayub, A., Sheikh, N. A., Tariq, R., Khan, M. M., & Invernizzi, C. M. (2018). Exergetic optimization and comparison of combined gas turbine supercritical CO2 power cycles. Journal of Renewable and Sustainable Energy, 10(4), 044703.
  • [42] Abid, M., Adebayo, V. O., & Atikol, U. (2019). Energetic and exegetic analysis of a novel multi-generation system using solar power tower. International Journal of Exergy, 29(2-4), 211-235.
  • [43] Vélez, F., Segovia, J. J., Martín, M. C., Antolín, G., Chejne, F., & Quijano, A. (2012). A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation. Renewable and Sustainable Energy Reviews, 16(6), 4175-4189
  • [44] Andersen, W. C., & Bruno, T. J. (2005). Rapid screening of fluids for chemical stability in organic Rankine cycle applications. Industrial & Engineering Chemistry Research, 44(15), 5560-5566.
  • [45] Pethurajan, V., Sivan, S., & Joy, G. C. (2018). Issues, comparisons, turbine selections and applications–An overview in organic Rankine cycle. Energy conversion and management, 166, 474-488.
  • [46] Yang, A., Su, Y., Shen, W., Chien, I. L., & Ren, J. (2019). Multi-objective optimization of organic Rankine cycle system for the waste heat recovery in the heat pump assisted reactive dividing wall column. Energy Conversion and Management, 199, 112041.
  • [47] Yang, A., Su, Y., Chien, I. L., Jin, S., Yan, C., & Shen, W. (2019). Investigation of an energy-saving double-thermally coupled extractive distillation for separating ternary system benzene/toluene/cyclohexane. Energy, 186, 115756.
  • [48] Agromayor, R., & Nord, L. O. (2017). Fluid selection and thermodynamic optimization of organic Rankine cycles for waste heat recovery applications. Energy Procedia, 129, 527-534.
  • [49] Shu, G., Zhao, M., Tian, H., Huo, Y., & Zhu, W. (2016). Experimental comparison of R123 and R245fa as working fluids for waste heat recovery from heavy-duty diesel engine. Energy, 115, 756-769.

Energy Production From Flue Gas of Sinter Plant Circular Coolers

Yıl 2024, Cilt: 17 Sayı: 2, 426 - 444, 31.08.2024
https://doi.org/10.18185/erzifbed.1465583

Öz

Bu çalışmada karbon emisyonlarının kritik seviyelere ulaşması ve fosil yakıt kaynaklarının azalması nedeniyle sinter tesisinde enerji yoğun sistemlerin dairesel soğutucularından atmosfere salınan atık ısının çevre dostu geri kazanım teknolojilerinden faydalanılması amaçlanmaktadır. Sinter tesisi enerji atık ısısının geri kazanımı için organik Rankine çevrimi (ORC) seçilmiştir. Çalışma kapsamındaki kütle akış hızları, brüt güç, pompanın güç tüketimi ve net güç çıkışını içeren performans metrikleri, bir yıl boyunca egzoz gazındaki değişimler dikkate alınarak değerlendirilmektedir. Sistemin enerji ve ekserji analizleri yapılarak her ay için maksimum performans değerleri belirlendi. Bu, 7,5 bar ile 36 bar arasında değişen basınçlar arasında çalışan, ORC içerisinde organik sıvı olarak R123 kullanılarak elde edildi. Sonuç olarak en yüksek net güce ağustos ayında ulaşılmış ve ekserji verimi %63 olarak belirlenmiştir. Atık enerjinin geri dönüşümü, sinter soğutucu sistem fanlarının elektrik tüketimini karşılamanın yanı sıra, geriye %62 oranında elektrik enerji fazlası bırakılmaktadır. Ayrıca bu değer tüm sinter tesisinin yıllık enerji ihtiyacının yaklaşık %18,3'üne karşılık gelmektedir.

Kaynakça

  • [1] B. Dai, C. Liu, S. Liu, D. Wang, Q. Wang, T. Zou, X. Zhou, Life cycle techno-enviroeconomic assessment of dual-temperature evaporation transcritical CO2 hightemperature heat pump systems for industrial waste heat recovery, Appl. Therm.Eng. 219 (2023), 119570.
  • [2] H. Jouhara, N. Nieto, B. Egilegor, J. Zuazua, E. Gonz´alez, I. Yebra, A. Igesias, B. Delpech, S. Almahmoud, D. Brough, J. Malinauskaite, Waste heat recovery solution based on a heat pipe heat exchanger for the aluminium die casting industry, Energy 266 (2023), 126459.
  • [3] Y. Zhang, L. Yu, K. Cui, H. Wang, T. Fu, Carbon capture and storage technology by steel-making slags: recent progress and future challenges, Chem. Eng. J. 455(2023), 140552.
  • [4] Cheng, H., Liu, Y., Cao, F., Zhang, Q., & Ouyang, J. (2022). Integration of an electronic thermoelectric material with ionogels to harvest heat from both temperature gradient and temperature fluctuation. Chemical Engineering Journal, 450, 138433.
  • [5] Shan, K., Luo, Q., Yun, P., Huang, L., Huang, K., Cao, B., ... & Jiang, H. (2023). All-day working photovoltaic cooling system for simultaneous generation of water and electricity by latent heat recycling. Chemical Engineering Journal, 457, 141283.
  • [6] Luo, Q., He, A., Xu, S., Miao, M., Liu, T., Cao, B., ... & Jiang, H. (2023). Utilization of low-grade heat for desalination and electricity generation through thermal osmosis energy conversion process. Chemical Engineering Journal, 452, 139560.
  • [7] C. Ononogbo, E.C. Nwosu, N.R. Nwakuba, G.N. Nwaji, O.C. Nwufo, O. C. Chukwuezie, M.M. Chukwu, E.E. Anyanwu, Opportunities of waste heat recovery from various sources: Review of technologies and implementation, Heliyon. (2023).
  • [8] Mahmoudi A, Fazli M, Morad MR. A recent review of waste heat recovery by Organic Rankine Cycle. Appl Therm Eng 2018;143:660–75.
  • [9] Koç A, Yağlı H, Koç Y, Uğurlu İ. Dünyada ve Türkiye’de Enerji Görünümünün Genel Değerlendirilmesi. Eng Machin Mag 2018;59(692).
  • [10] Achinas S, Euverink GJW. Elevated biogas production from the anaerobic co-digestion of farmhouse waste: Insight into the process performance and kinetics.Waste Manage Res 2019. 0734242X19873383.
  • [11] Achinas S, Krooneman J, Euverink GJW. Enhanced biogas production from the anaerobic batch treatment of banana peels. Engineering 2019.
  • [12] Bao J, Zhao L. A review of working fluid and expander selections for organic Rankine cycle. Renew Sustain Energy Rev 2013;24:325–42.
  • [13] İnternet: IEA, World Energy Outlook 2023, URL: World Energy Outlook 2023 – Analysis - IEA, Son Erişim Tarihi: 21.02.2024.
  • [14] Yağlı, H., Koç, Y., Koç, A., Görgülü, A., & Tandiroğlu, A. (2016). Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic Rankine cycle (ORC) for biogas fuelled combined heat and power (CHP) engine exhaust gas waste heat. Energy, 111, 923-932.
  • [15] Yagli, H., Koc, A., Karakus, C., & Koc, Y. (2016). Comparison of toluene and cyclohexane as a working fluid of an organic Rankine cycle used for reheat furnace waste heat recovery. International Journal of Exergy, 19(3), 420-438.
  • [16] Takleh, H. R., & Zare, V. (2019). Employing thermoelectric generator and booster compressor for performance improvement of a geothermal driven combined power and ejector-refrigeration cycle. Energy Conversion and Management, 186, 120-130.
  • [17] Takleh, H. R., & Zare, V. (2019). Performance improvement of ejector expansion refrigeration cycles employing a booster compressor using different refrigerants: Thermodynamic analysis and optimization. International Journal of Refrigeration, 101, 56-70.
  • [18] Bao, J., & Zhao, L. (2013). A review of working fluid and expander selections for organic Rankine cycle. Renewable and sustainable energy reviews, 24, 325-342
  • [19] Chen, H., Goswami, D. Y., & Stefanakos, E. K. (2010). A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable and sustainable energy reviews, 14(9), 3059-3067.
  • [20] Sprouse III, C., & Depcik, C. (2013). Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery. Applied thermal engineering, 51(1-2), 711-722.
  • [21] Yang, W., Feng, H., Chen, L., & Ge, Y. (2023). Power and efficiency optimizations of a simple irreversible supercritical organic Rankine cycle. Energy, 278, 127755.
  • [22] Quoilin, S., Orosz, M., Hemond, H., & Lemort, V. (2011). Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation. Solar energy, 85(5), 955-966.
  • [23] Calise, F., Capuozzo, C and Vanoli, L. (2013). Design and parametric optimization of an Organic Rankine Cycle powered by solar energy. American Journal of Engineering and Applied Sciences, 6(2), 178-204.
  • [24] Liu, X., Hu, G., & Zeng, Z. (2022). Potential of biomass processing using digester in arrangement with a Brayton cycle, a Kalina cycle, and a multi-effect desalination; thermodynamic/environmental/financial study and MOPSO-based optimization. Energy, 261, 125222.
  • [25] Liu, X., Hu, G., & Zeng, Z. (2023). Performance characterization and multi-objective optimization of integrating a biomass-fueled brayton cycle, a kalina cycle, and an organic rankine cycle with a claude hydrogen liquefaction cycle. Energy, 263, 125535.
  • [26] Yu, W., Liu, C., Ban, X., Li, Z., Yan, T., Xin, L., & Wang, S. (2024). A novel method for predicting the thermal stabilization temperature of organic Rankine cycle system working fluids based on transition state theory. Energy, 130378.
  • [27] Feng, J., Cheng, X., Wang, H., Zhao, L., Wang, H., & Dong, H. (2024). Performance analysis and multi-objective optimization of organic Rankine cycle for low-grade sinter waste heat recovery. Case Studies in Thermal Engineering, 53, 103915.
  • [28] Akkaya, A. V., & Sahin, B. (2009). A study on performance of solid oxide fuel cell‐organic Rankine cycle combined system. International Journal of Energy Research, 33(6), 553-564.
  • [29] Wang, Z. Q., Zhou, N. J., Guo, J., & Wang, X. Y. (2012). Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat. Energy, 40(1), 107-115.
  • [30] Xu, W., Deng, S., Zhao, L., Su, W., Zhang, Y., Li, S., & Ma, M. (2018). How to quantitatively describe the role of the pure working fluids in subcritical organic Rankine cycle: A limitation on efficiency. Energy conversion and management, 172, 316-327.
  • [31] Hærvig, J., Sørensen, K., & Condra, T. J. (2016). Guidelines for optimal selection of working fluid for an organic Rankine cycle in relation to waste heat recovery. Energy, 96, 592-602.
  • [32] Jeong, Y. S., Park, K., Jang, Y. C., & Moon, S. J. (2024). Optimal working-fluid selection for organic Rankine cycle integrated into a combined cycle cogeneration plant. Journal of Mechanical Science and Technology, 38(4), 2073-2080.
  • [33] Elmaihy, A., Rashad, A., Elweteedy, A., & Nessim, W. (2023). Energy and exergy analyses for organic Rankine cycle driven by cooling water of passenger car engine using sixteen working fluids. Energy Conversion and Management: X, 20, 100415.
  • [34] Cengel, Y.A. and Boles,, M.A. (2008) Thermodynamics: an engineering approach, McGraw-Hill Inc., 6th. Ed., New York, 2008.
  • [35] Dincer, I., & Rosen, M. A. (2013). Exergy: energy, environment and sustainable development. Elsevier, 2nd. Ed., 2013.
  • [36] Kotas, T. J. (2013). The exergy method of thermal plant analysis. Elsevier.
  • [37] Safari, F., & Dincer, I. (2019). Development and analysis of a novel biomass-based integrated system for multigeneration with hydrogen production. International Journal of Hydrogen Energy, 44(7), 3511-3526.
  • [38] Yağlı, H., Karakuş, C., Koç, Y., Çevik, M., Uğurlu, İ., & Koç, A. (2019). Designing and exergetic analysis of a solar power tower system for Iskenderun region. International Journal of Exergy, 28(1), 96-112.
  • [39] Koç, Y., Yağlı, H., & Koç, A. (2019). Exergy Analysis and Performance Improvement of a Subcritical/Supercritical Organic Rankine Cycle (ORC) for Exhaust Gas Waste Heat Recovery in a Biogas Fuelled Combined Heat and Power (CHP) Engine Through the Use of Regeneration. Energies, 12(4), 575.
  • [40] Koc, Y., Kose, O., & Yagli, H. (2019). Exergy analysis of a natural gas fuelled gas turbine based cogeneration cycle. Int. J. Exergy, 30, 103-125.
  • [41] Ayub, A., Sheikh, N. A., Tariq, R., Khan, M. M., & Invernizzi, C. M. (2018). Exergetic optimization and comparison of combined gas turbine supercritical CO2 power cycles. Journal of Renewable and Sustainable Energy, 10(4), 044703.
  • [42] Abid, M., Adebayo, V. O., & Atikol, U. (2019). Energetic and exegetic analysis of a novel multi-generation system using solar power tower. International Journal of Exergy, 29(2-4), 211-235.
  • [43] Vélez, F., Segovia, J. J., Martín, M. C., Antolín, G., Chejne, F., & Quijano, A. (2012). A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation. Renewable and Sustainable Energy Reviews, 16(6), 4175-4189
  • [44] Andersen, W. C., & Bruno, T. J. (2005). Rapid screening of fluids for chemical stability in organic Rankine cycle applications. Industrial & Engineering Chemistry Research, 44(15), 5560-5566.
  • [45] Pethurajan, V., Sivan, S., & Joy, G. C. (2018). Issues, comparisons, turbine selections and applications–An overview in organic Rankine cycle. Energy conversion and management, 166, 474-488.
  • [46] Yang, A., Su, Y., Shen, W., Chien, I. L., & Ren, J. (2019). Multi-objective optimization of organic Rankine cycle system for the waste heat recovery in the heat pump assisted reactive dividing wall column. Energy Conversion and Management, 199, 112041.
  • [47] Yang, A., Su, Y., Chien, I. L., Jin, S., Yan, C., & Shen, W. (2019). Investigation of an energy-saving double-thermally coupled extractive distillation for separating ternary system benzene/toluene/cyclohexane. Energy, 186, 115756.
  • [48] Agromayor, R., & Nord, L. O. (2017). Fluid selection and thermodynamic optimization of organic Rankine cycles for waste heat recovery applications. Energy Procedia, 129, 527-534.
  • [49] Shu, G., Zhao, M., Tian, H., Huo, Y., & Zhu, W. (2016). Experimental comparison of R123 and R245fa as working fluids for waste heat recovery from heavy-duty diesel engine. Energy, 115, 756-769.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Makaleler
Yazarlar

Tuba Nur Akçali 0009-0003-6835-3347

Yıldız Koç 0000-0002-2219-645X

Özkan Köse 0000-0002-9069-1989

Yayımlanma Tarihi 31 Ağustos 2024
Gönderilme Tarihi 5 Nisan 2024
Kabul Tarihi 11 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 17 Sayı: 2

Kaynak Göster

APA Akçali, T. N., Koç, Y., & Köse, Ö. (2024). Energy Production From Flue Gas of Sinter Plant Circular Coolers. Erzincan University Journal of Science and Technology, 17(2), 426-444. https://doi.org/10.18185/erzifbed.1465583