Araştırma Makalesi
BibTex RIS Kaynak Göster

Terahertz Bölgesinde Yüksek Verimli ve Geniş Bant Polarizasyon Dönüştürücü Tasarımı

Yıl 2025, Cilt: 18 Sayı: 1, 24 - 41, 28.03.2025
https://doi.org/10.18185/erzifbed.1397840

Öz

Kaynakça

  • [1] Yu, F. Y., Zhu, J. B., & Shen, X. B. (2022). Tunable and reflective polarization converter based on single-layer vanadium dioxide-integrated metasurface in terahertz region. Optical Materials, 123, 111745.
  • [2] Grosjean, T., Baida, F., Adam, R., Guillet, J. P., Billot, L., Nouvel, P., Torres, J., Penarier, A., Charraut, D., & Chusseau, L. (2008). Linear to radial polarization conversion in the THz domain using a passive system. Optics express, 16(23), 18895-18909.
  • [3] Yu, F. Y., Shang, X. J., Fang, W., Zhang, Q. Q., Wu, Y., Zhao, W., Liu, J., Song, Q., Wang, C., Zhu, J., & Shen, X. B. (2022). A terahertz tunable metamaterial reflective polarization converter based on vanadium oxide film. Plasmonics, 17(2), 823-829.
  • [4] Song, Z., Zhu, J., Zhu, C., Yu, Z., & Liu, Q. (2015). Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta-reflectarrays. Materials Letters, 159, 269-272.
  • [5] Zhang, J., Tian, J., Xiao, S., & Li, L. (2020). Methodology for high purity broadband near-unity THz linear polarization converter and its switching characteristics. IEEE Access, 8, 46505-46517.
  • [6] Guo, Y., Xu, J., Lan, C., & Bi, K. (2021). Broadband and high-efficiency linear polarization converter based on reflective metasurface. Engineered Science, 14(2), 39-45.
  • [7] Akkaş, M. A. (2018). Terahertz Teknolojisi Uygulamaları ve Terahertz Dalgalarının Kablosuz Haberleşme için Elektromanyetik Modellemesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 18(1), 190-200.
  • [8] Nagatsuma, T., Ducournau, G., & Renaud, C. C. (2016). Advances in terahertz communications accelerated by photonics. Nature Photonics, 10(6), 371-379.
  • [9] Pawar, A. Y., Sonawane, D. D., Erande, K. B., & Derle, D. V. (2013). Terahertz technology and its applications. Drug invention today, 5(2), 157-163.
  • [10] Fu, G., Polity, A., Volbers, N., & Meyer, B. K. (2006). Annealing effects on VO2 thin films deposited by reactive sputtering. Thin Solid Films, 515(4), 2519-2522.
  • [11] Choi, S. B., Kyoung, J. S., Kim, H. S., Park, H. R., Park, D. J., Kim, B. J., Ahn, Y. H., Rotermund, F., Kim, H.T., Ahn, K. J., & Kim, D. S. (2011). Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film. Applied Physics Letters, 98(7).
  • [12] Wu, C., Feng, F., & Xie, Y. (2013). Design of vanadium oxide structures with controllable electrical properties for energy applications. Chemical Society Reviews, 42(12), 5157-5183.
  • [13] Lv, T. T., Li, Y. X., Ma, H. F., Zhu, Z., Li, Z. P., Guan, C. Y., Shi, J. H., Zhang, H., & Cui, T. J. (2016). Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition. Scientific reports, 6(1), 23186
  • [14] Zheng, X., Xiao, Z., & Ling, X. (2018). A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film. Plasmonics, 13, 287-291.
  • [15] Qiu, Y., Yan, D. X., Feng, Q. Y., Li, X. J., Zhang, L., Qiu, G. H., & Li, J. N. (2022). Vanadium dioxide-assisted switchable multifunctional metamaterial structure. Optics Express, 30(15), 26544-26556.
  • [16] Lin, B., Lv, L., Guo, J., Liu, Z., Ji, X., & Wu, J. (2020). An ultra-wideband reflective linear-to-circular polarization converter based on anisotropic metasurface. IEEE Access, 8, 82732-82740.
  • [17] Kamal, B., Chen, J., Yingzeng, Y., Ren, J., Ullah, S., & Khan, W. U. R. (2021). High efficiency and ultra-wideband polarization converter based on an L-shaped metasurface. Optical Materials Express, 11(5), 1343-1352.
  • [18] Li, Z. Y., Li, S. J., Han, B. W., Huang, G. S., Guo, Z. X., & Cao, X. Y. (2021). Quad‐band transmissive metasurface with linear to dual‐circular polarization conversion simultaneously. Advanced theory and simulations, 4(8), 2100117.
  • [19] Mei, Z. L., Ma, X. M., Lu, C., & Zhao, Y. D. (2017). High-efficiency and wide-bandwidth linear polarization converter based on double U-shaped metasurface. Aip Advances, 7(12).
  • [20] Lin, B. Q., Lv, L. T., Guo, J. X., Wang, Z. L., Huang, S. Q., & Wang, Y. W. (2020). Ultra-wideband linear-to-circular polarization conversion metasurface. Chinese Physics B, 29(10), 104205.
  • [21] Nguyen, T. K. T., Nguyen, T. M., Nguyen, H. Q., Cao, T. N., Le, D. T., Bui, X. K., Bui, S. T., Truong, C. L., Vu, D. L., & Nguyen, T. Q. H. (2021). Simple design of efficient broadband multifunctional polarization converter for X-band applications. Scientific Reports, 11(1), 2032.
  • [22] Xu, G., Gao, L., Chen, Y., Ding, Y., Wang, J., Fang, Y., Wu, X., & Sun, Y. (2022). Broadband polarization manipulation based on W-shaped metasurface. Frontiers in Materials, 9, 850020.
  • [23] Khan, M. I. (2018). Design and Analysis of Metasurfaces for Polarization Conversion of Electromagnetic Waves (Doctoral dissertation, National University of Science & Technology, Islamabad).
  • [24] Zhao, J., & Cheng, Y. (2016). A high-efficiency and broadband reflective 90 linear polarization rotator based on anisotropic metamaterial. Applied Physics B, 122, 1-7.
  • [25] Khan, M. I., Hu, B., Amanat, A., Ullah, N., Khan, M. J. I., & Khalid, A. R. (2020). Efficient asymmetric transmission for wide incidence angles using bi-layered chiral metasurface. Journal of Physics D: Applied Physics, 53(30), 305004.
  • [26] Couto, M. M., Silva, M. W. B., & Campos, A. L. P. S. (2021). A novel ultra-wideband reflective cross-polarization converter based on anisotropic metasurface. Journal of Electromagnetic Waves and Applications, 35(12), 1652-1662.
  • [27] Xu, J., Li, R., Wang, S., & Han, T. (2018). Ultra-broadband linear polarization converter based on anisotropic metasurface. Optics Express, 26(20), 26235-26241.
  • [28] Gao, J., Wang, C., Qiang, T., Zhang, K., & Wu, Q. (2018). Multifunctional polarization converter based on dielectric metamaterial. physica status solidi (a), 215(11), 1700535.
  • [29] Khan, M. I., Khalid, Z., & Tahir, F. A. (2019). Linear and circular-polarization conversion in X-band using anisotropic metasurface. Scientific reports, 9(1), 4552.
  • [30] Lin, B. Q., Lv, L. T., Guo, J. X., Wang, Z. L., Huang, S. Q., & Wang, Y. W. (2020). Ultra-wideband linear-to-circular polarization conversion metasurface. Chinese Physics B, 29(10), 104205.
  • [31] Niu, J., Yao, Q., Mo, W., Li, C., & Zhu, A. (2023). Switchable bi-functional metamaterial based on vanadium dioxide for broadband absorption and broadband polarization in terahertz band. Optics Communications, 527, 128953.
  • [32] Zhang, G., Wu, Q., Zhong, Z., & Zhang, B. (2023). Bifunctional metasurface for cross-polarization conversion and ultra-broadband absorption in terahertz range. Optics Communications, 531, 129181.
  • [33] Xiao, Z., Zou, H., Zheng, X., Ling, X., & Wang, L. (2017). A tunable reflective polarization converter based on hybrid metamaterial. Optical and Quantum Electronics, 49, 1-11.
  • [34] Yang, X., Zhang, B., & Shen, J. (2018). An ultra-broadband and highly-efficient tunable terahertz polarization converter based on composite metamaterial. Optical and Quantum Electronics, 50, 1-11.
  • [35] Zhang, J., Zhang, K., Cao, A., Liu, Y., & Kong, W. (2020). Bi-functional switchable broadband terahertz polarization converter based on a hybrid graphene-metal metasurface. Optics Express, 28(18), 26102-26110.
  • [36] Yang, C., Gao, Q., Dai, L., Zhang, Y., Zhang, H., & Zhang, Y. (2020). Bifunctional tunable terahertz circular polarization converter based on Dirac semimetals and vanadium dioxide. Optical Materials Express, 10(9), 2289-2303.
  • [37] Zhang, X., Ye, H., Zhao, Y., & Zhang, H. (2021). A tunable ultra-wideband cross-polarization conversion based on the band splicing technology. Applied Physics B, 127, 1-11.
  • [38] Zhang, H., He, X., Zhang, D., & Zhang, H. (2022). Multitasking device with switchable and tailored functions of ultra-broadband absorption and polarization conversion. Optics Express, 30(13), 23341-23358.
  • [39] Lian, X., Ma, M., Tian, J., & Yang, R. (2023). Study on a bifunctional switchable metasurface with perfect absorption and polarization conversion based on VO2 and graphene in THz region. Diamond and Related Materials, 110060.
  • [40] Li, W., Sun, J., Su, C., Gao, P., Wang, X., Liu, X., Xia, F., Zhang, K., Dong, L., & Yun, M. (2023). Dual-pattern broadband polarization converter in THz band based on graphene and VO2 hybrid metasurface. Results in Physics, 107021

High Efficiency and Wideband Polarization Converter Design in Terahertz Region

Yıl 2025, Cilt: 18 Sayı: 1, 24 - 41, 28.03.2025
https://doi.org/10.18185/erzifbed.1397840

Öz

In this study, the design of an adaptable, high-efficiency, and broadband polarization converter in the terahetz (THz) region was carried out in a computer environment with the electromagnetic simulation program CST Microwave Studio. Current density at the resonance frequencies of the designed model, reflection coefficients for the polarization converter, polarization conversion ratios, orthogonal components, and phase differences were examined in Excel graphics. The metamaterial designed as substrate Gold (Au), middle layer Rogers RT5880LZ, and top layer vanadium dioxide (VO2)-Au composition, with the Bruggeman effect model, and the dielectric constant of VO2 being taken as ε=9, has a Polarization Conversion Ratio (PCR), of over 90% in the range of 5.29-13.68 THz the relative bandwidth (RBW) was calculated as 88.40%. When the dielectric constant of VO2 is taken as ε=12 with the Drude model, the RBW is calculated as 89.39% with a PCR of over 90% in the range of 5.20-13.61 THz. The designed model is 5.4 μm thick, adaptable, and highly efficient. In addition, a dynamic metamaterial was designed because the conductivity level of VO2 changes according to temperature.

Kaynakça

  • [1] Yu, F. Y., Zhu, J. B., & Shen, X. B. (2022). Tunable and reflective polarization converter based on single-layer vanadium dioxide-integrated metasurface in terahertz region. Optical Materials, 123, 111745.
  • [2] Grosjean, T., Baida, F., Adam, R., Guillet, J. P., Billot, L., Nouvel, P., Torres, J., Penarier, A., Charraut, D., & Chusseau, L. (2008). Linear to radial polarization conversion in the THz domain using a passive system. Optics express, 16(23), 18895-18909.
  • [3] Yu, F. Y., Shang, X. J., Fang, W., Zhang, Q. Q., Wu, Y., Zhao, W., Liu, J., Song, Q., Wang, C., Zhu, J., & Shen, X. B. (2022). A terahertz tunable metamaterial reflective polarization converter based on vanadium oxide film. Plasmonics, 17(2), 823-829.
  • [4] Song, Z., Zhu, J., Zhu, C., Yu, Z., & Liu, Q. (2015). Broadband cross polarization converter with unity efficiency for terahertz waves based on anisotropic dielectric meta-reflectarrays. Materials Letters, 159, 269-272.
  • [5] Zhang, J., Tian, J., Xiao, S., & Li, L. (2020). Methodology for high purity broadband near-unity THz linear polarization converter and its switching characteristics. IEEE Access, 8, 46505-46517.
  • [6] Guo, Y., Xu, J., Lan, C., & Bi, K. (2021). Broadband and high-efficiency linear polarization converter based on reflective metasurface. Engineered Science, 14(2), 39-45.
  • [7] Akkaş, M. A. (2018). Terahertz Teknolojisi Uygulamaları ve Terahertz Dalgalarının Kablosuz Haberleşme için Elektromanyetik Modellemesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 18(1), 190-200.
  • [8] Nagatsuma, T., Ducournau, G., & Renaud, C. C. (2016). Advances in terahertz communications accelerated by photonics. Nature Photonics, 10(6), 371-379.
  • [9] Pawar, A. Y., Sonawane, D. D., Erande, K. B., & Derle, D. V. (2013). Terahertz technology and its applications. Drug invention today, 5(2), 157-163.
  • [10] Fu, G., Polity, A., Volbers, N., & Meyer, B. K. (2006). Annealing effects on VO2 thin films deposited by reactive sputtering. Thin Solid Films, 515(4), 2519-2522.
  • [11] Choi, S. B., Kyoung, J. S., Kim, H. S., Park, H. R., Park, D. J., Kim, B. J., Ahn, Y. H., Rotermund, F., Kim, H.T., Ahn, K. J., & Kim, D. S. (2011). Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film. Applied Physics Letters, 98(7).
  • [12] Wu, C., Feng, F., & Xie, Y. (2013). Design of vanadium oxide structures with controllable electrical properties for energy applications. Chemical Society Reviews, 42(12), 5157-5183.
  • [13] Lv, T. T., Li, Y. X., Ma, H. F., Zhu, Z., Li, Z. P., Guan, C. Y., Shi, J. H., Zhang, H., & Cui, T. J. (2016). Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition. Scientific reports, 6(1), 23186
  • [14] Zheng, X., Xiao, Z., & Ling, X. (2018). A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film. Plasmonics, 13, 287-291.
  • [15] Qiu, Y., Yan, D. X., Feng, Q. Y., Li, X. J., Zhang, L., Qiu, G. H., & Li, J. N. (2022). Vanadium dioxide-assisted switchable multifunctional metamaterial structure. Optics Express, 30(15), 26544-26556.
  • [16] Lin, B., Lv, L., Guo, J., Liu, Z., Ji, X., & Wu, J. (2020). An ultra-wideband reflective linear-to-circular polarization converter based on anisotropic metasurface. IEEE Access, 8, 82732-82740.
  • [17] Kamal, B., Chen, J., Yingzeng, Y., Ren, J., Ullah, S., & Khan, W. U. R. (2021). High efficiency and ultra-wideband polarization converter based on an L-shaped metasurface. Optical Materials Express, 11(5), 1343-1352.
  • [18] Li, Z. Y., Li, S. J., Han, B. W., Huang, G. S., Guo, Z. X., & Cao, X. Y. (2021). Quad‐band transmissive metasurface with linear to dual‐circular polarization conversion simultaneously. Advanced theory and simulations, 4(8), 2100117.
  • [19] Mei, Z. L., Ma, X. M., Lu, C., & Zhao, Y. D. (2017). High-efficiency and wide-bandwidth linear polarization converter based on double U-shaped metasurface. Aip Advances, 7(12).
  • [20] Lin, B. Q., Lv, L. T., Guo, J. X., Wang, Z. L., Huang, S. Q., & Wang, Y. W. (2020). Ultra-wideband linear-to-circular polarization conversion metasurface. Chinese Physics B, 29(10), 104205.
  • [21] Nguyen, T. K. T., Nguyen, T. M., Nguyen, H. Q., Cao, T. N., Le, D. T., Bui, X. K., Bui, S. T., Truong, C. L., Vu, D. L., & Nguyen, T. Q. H. (2021). Simple design of efficient broadband multifunctional polarization converter for X-band applications. Scientific Reports, 11(1), 2032.
  • [22] Xu, G., Gao, L., Chen, Y., Ding, Y., Wang, J., Fang, Y., Wu, X., & Sun, Y. (2022). Broadband polarization manipulation based on W-shaped metasurface. Frontiers in Materials, 9, 850020.
  • [23] Khan, M. I. (2018). Design and Analysis of Metasurfaces for Polarization Conversion of Electromagnetic Waves (Doctoral dissertation, National University of Science & Technology, Islamabad).
  • [24] Zhao, J., & Cheng, Y. (2016). A high-efficiency and broadband reflective 90 linear polarization rotator based on anisotropic metamaterial. Applied Physics B, 122, 1-7.
  • [25] Khan, M. I., Hu, B., Amanat, A., Ullah, N., Khan, M. J. I., & Khalid, A. R. (2020). Efficient asymmetric transmission for wide incidence angles using bi-layered chiral metasurface. Journal of Physics D: Applied Physics, 53(30), 305004.
  • [26] Couto, M. M., Silva, M. W. B., & Campos, A. L. P. S. (2021). A novel ultra-wideband reflective cross-polarization converter based on anisotropic metasurface. Journal of Electromagnetic Waves and Applications, 35(12), 1652-1662.
  • [27] Xu, J., Li, R., Wang, S., & Han, T. (2018). Ultra-broadband linear polarization converter based on anisotropic metasurface. Optics Express, 26(20), 26235-26241.
  • [28] Gao, J., Wang, C., Qiang, T., Zhang, K., & Wu, Q. (2018). Multifunctional polarization converter based on dielectric metamaterial. physica status solidi (a), 215(11), 1700535.
  • [29] Khan, M. I., Khalid, Z., & Tahir, F. A. (2019). Linear and circular-polarization conversion in X-band using anisotropic metasurface. Scientific reports, 9(1), 4552.
  • [30] Lin, B. Q., Lv, L. T., Guo, J. X., Wang, Z. L., Huang, S. Q., & Wang, Y. W. (2020). Ultra-wideband linear-to-circular polarization conversion metasurface. Chinese Physics B, 29(10), 104205.
  • [31] Niu, J., Yao, Q., Mo, W., Li, C., & Zhu, A. (2023). Switchable bi-functional metamaterial based on vanadium dioxide for broadband absorption and broadband polarization in terahertz band. Optics Communications, 527, 128953.
  • [32] Zhang, G., Wu, Q., Zhong, Z., & Zhang, B. (2023). Bifunctional metasurface for cross-polarization conversion and ultra-broadband absorption in terahertz range. Optics Communications, 531, 129181.
  • [33] Xiao, Z., Zou, H., Zheng, X., Ling, X., & Wang, L. (2017). A tunable reflective polarization converter based on hybrid metamaterial. Optical and Quantum Electronics, 49, 1-11.
  • [34] Yang, X., Zhang, B., & Shen, J. (2018). An ultra-broadband and highly-efficient tunable terahertz polarization converter based on composite metamaterial. Optical and Quantum Electronics, 50, 1-11.
  • [35] Zhang, J., Zhang, K., Cao, A., Liu, Y., & Kong, W. (2020). Bi-functional switchable broadband terahertz polarization converter based on a hybrid graphene-metal metasurface. Optics Express, 28(18), 26102-26110.
  • [36] Yang, C., Gao, Q., Dai, L., Zhang, Y., Zhang, H., & Zhang, Y. (2020). Bifunctional tunable terahertz circular polarization converter based on Dirac semimetals and vanadium dioxide. Optical Materials Express, 10(9), 2289-2303.
  • [37] Zhang, X., Ye, H., Zhao, Y., & Zhang, H. (2021). A tunable ultra-wideband cross-polarization conversion based on the band splicing technology. Applied Physics B, 127, 1-11.
  • [38] Zhang, H., He, X., Zhang, D., & Zhang, H. (2022). Multitasking device with switchable and tailored functions of ultra-broadband absorption and polarization conversion. Optics Express, 30(13), 23341-23358.
  • [39] Lian, X., Ma, M., Tian, J., & Yang, R. (2023). Study on a bifunctional switchable metasurface with perfect absorption and polarization conversion based on VO2 and graphene in THz region. Diamond and Related Materials, 110060.
  • [40] Li, W., Sun, J., Su, C., Gao, P., Wang, X., Liu, X., Xia, F., Zhang, K., Dong, L., & Yun, M. (2023). Dual-pattern broadband polarization converter in THz band based on graphene and VO2 hybrid metasurface. Results in Physics, 107021
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Fatih Kadiroğlu 0000-0001-5077-8601

Gökhan Öztürk 0000-0001-8106-0053

Erken Görünüm Tarihi 26 Mart 2025
Yayımlanma Tarihi 28 Mart 2025
Gönderilme Tarihi 29 Kasım 2023
Kabul Tarihi 19 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 1

Kaynak Göster

APA Kadiroğlu, F., & Öztürk, G. (2025). High Efficiency and Wideband Polarization Converter Design in Terahertz Region. Erzincan University Journal of Science and Technology, 18(1), 24-41. https://doi.org/10.18185/erzifbed.1397840