Araştırma Makalesi
BibTex RIS Kaynak Göster

Quercetin/Fe3O4@Cu(II) Hybrid Structures Fabrication and Cytotoxic Activity

Yıl 2025, Cilt: 18 Sayı: 1, 59 - 72, 28.03.2025
https://doi.org/10.18185/erzifbed.1437504

Öz

In this study, firstly, the synthesis of magnetic Fe nanomaterials (Fe3O4 NMs) was carried out and then quercetin was immobilized into the synthesized nanomaterial. Synthesis of Organic@inorganic hybrid nanoflowers (Quercetin/Fe3O4@Cu (II) hNFs) was carried out using quercetin as the organic component and Cu (II) metal ions and Fe3O4 as inorganic components. Characterization of Quercetin/Fe3O4@Cu (II)hNFs was carried out using various methods such as FTIR, XRD, SEM, EDX, NTA and elemental mapping. Then, the anticancer activities of Quercetin/Fe3O4@Cu (II) hNFs were evaluated by the MTT method using the MCF7 (breast cancer) cell line.

Kaynakça

  • [1] Somturk Yilmaz, B., Bekci, H., Altiparmak, A., Uysal, S., Şenkardeş, İ., Zengin, G. 2024. Determination of anticancer activity and biosynthesis of Cu, Zn, and Co hybrid nanoflowers with Tribulus terrestris L. extract. Process Biochemistry. 138: 14-22
  • [2] Uras, I.S, Karslı, B., Konuklugil, B., Ocsoy, I., Demirbas, A. 2023. Organic–Inorganic Nanocomposites of Aspergillus terreus Extract and Its Compounds with Antimicrobial Properties. Sustainability 2023, 15(5), 4638; https://doi.org/10.3390/su15054638
  • [3] Dadi, S., Celik, C., Ocsoy, I., 2020. Gallic acid nanofower immobilized membrane with peroxidase like activity for m cresol detection. Gallic acid nanofower immobilized membrane with peroxidase like activity for m cresol detection. Scientific Reports. 10:16765
  • [4]Yoshida, H., Takamura, N., Shuto, T., Ogata, K., Tokunaga, J. ve Kawai, K., 2010, The citrus flavonoids hesperetin and naringenin block the lipolytic actions of TNF-α in mouse adipocytes, Biochemical and Biophysical Research Communications, 394, 728-732.
  • [5] Zeng, W., Jin, L., Zhang, F., Zhang, C. ve Liang, W., 2018, Naringenin as a potential immunomodulator in therapeutics, Pharmacological Research, 135 (2018), 122–126.
  • [6]Zhang, J.J., Dong, X., Cao, Y.Y., Yuan, Y. D., Yang, Y.B., Yan, Y.Q., vd., 2020, Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China, Allergy, 75, 1730–41. doi: 10.1111/all. 14238.
  • [7]Zhang, L., Song, L., Zhang, P., Liu, T., Zhou, L., Yang, G., Lin, R. ve Zhang, J., 2015, Solubilities of naringin and naringenin in different solvents and dissociation constants of naringenin, Journal of Chemical & Engineering Data, 60(3), 932-40. https://doi.org/10.1021/je501004g.
  • [8]Wang, M.J., Chao, P.D., Hou, Y.C. ve Hsiu, S.L., 2006, Pharmacokinetics and conjugation metabolism of naringin and naringenin in rats after single dose and multiple dose administrations, Journal of Food and Drug Analysis, 14(3), 247-253.
  • [9]Wang, N., Li, D., Lu, N.H., Yi, L., Huang, X.W. ve Gao, Z.H., 2010, Peroxynitrite and hemoglobinmediated nitrative/oxidative modification of human plasma protein: effects of some flavonoids, Journal of Asian Natural Products Research, 12(4), 257-64. https://doi.org/10.1080/10286021003620226.
  • [10]Wang, Y., Wang, S., Firempong, C.K., Zhang, H., Wang, M., Zhang, Y., Zhu, Y., Yu, J., Xu, X., 2017, Enhanced solubility and bioavailability o fnaringenin via liposomal nanoformulation: preparation and in vitro and in vivo evaluations, AAPS PharmSciTech, (2017) 18, 586–94. doi: 10.1208/s12249-016-0537-8.
  • [11]Wang, Z., Wang, S., Zhao, J., Yu, C., Hu, Y., Tu, Y., Yang, Z., Zheng, J., Wang, Y., Gao, Y., 2019, Naringenin ameliorates renovascular hypertensive renal damage by normalizing the balance of reninangiotensin system components in rats, International Journal of Medical Sciences, 16, 644– 53. doi: 10.7150/ijms.31075.
  • [12]Wilcox, L.J., Borradaile, N.M. ve Huff, M.W., 1999, Antiatherogenic properties of naringenin, a citrus flavonoid, Cardiovascular Drug Reviews,17:160-178.
  • [13]Yao, L.H., Jiang, Y.M., Shi, J., Tomas-Barberan, F.A., Datta N., Singanusong, R., Chen, S. S., 2004, Flavonoids in food and their health benefits, Plant Foods for Human Nutrition, 59(3), 113-22. https://doi.org/10.1007/s11130-004- 0049-7.
  • [14]Alam, M.A., Subhan, N., Rahman, M.M., Uddin, S.J., Reza, H.M. ve Sarker, S.D., 2014, Effect of citrus flavonoids, naringin and naringenin on metabolic syndrome and their mechanisms of action, Advances, and Nutrition, 5(4), 404- 17. https://doi.org/10.3945/an.113.005603.
  • [15]Alberca, R.W., Teixeira, F.M.E., Beserra, D.R., de Oliveira, E.A., de Andrade, M.M.S., Pietrobon, A.J. ve Sato, M.N., 2020, Perspective: the potential effects of naringenin in COVID19, Frontiers in Immunology, (2020) 11, 1.
  • [16]Bourian, M., Runkel, M., Krisp, A., Tegtmeier, M., Freudenstein, J. ve Legrum, W., 1999, Naringenin and interindividual variability in interaction of coumarin with grapefruit juice, Experimental, and Toxicologic Pathology, (1999) 51, 289–93. doi: 10.1016/S0940- 2993(99)80008-6.
  • [17]Breinholt, V.M., Svendsen, G.W., Dragsted, L.O. ve Hossaini, A., 2008, The citrus-derived flavonoid naringenin exerts uterotrophic effects in female mice at human relevant doses, Basic and Clinical Pharmacology and Toxicology, (2008) 94, 30–6. doi: 10.1111/ j.1742- 7843.2004.pto_940106.x.
  • [18] Lee, H., Shao, H., Huang, Y. , Kwak, B., 2005. “Synthesis of MRI contrast agent by coating superparamagnetic iron oxide with chitosan,” IEEE Transactions on Magnetics, vol. 41, no. 10, pp. 4102–4104
  • [19] Alhayali, N.I., Kalaycıoglu Ozpozan, N., Dayan, S., Ozdemir, N., Somtürk Yılmaz, B., 2021. Catalase/Fe3O4@Cu2+ hybrid biocatalytic nanoflowers fabrication and efficiency in the reduction of organic pollutants. Polyhedron,194,114888
  • [20]Somturk B, Hançer M, Öcsoy İ, Ozdemir N (2015). Synthesis of copper ion incorporated horseradish peroxidase based hybrid nanoflowers for enhanced catalytic activity and stability. Dalton Trans., 44(31):13845-13852. doi:10.1039/c5dt01250c
  • [21] Somturk B, Yilmaz I, Altinkaynak C, Karatepe A, Özdemir N, Ocsoy I (2016) Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme Microb Technol 86:134–142. doi:10.1016/j.enzmictec.2015.09.005
  • [22] Ge, J., Lei, J.D., Zare, R.N. (2012), Protein-inorganic hybrid nanoflowers Nat. Nanotechnol., 7 , 428-432
  • [23]Noma, S.A., Somturk Yilmaz, B., Ulu, A., Ozdemir, N., Ateş, B. Development of l‐asparaginase@hybrid Nanoflowers (ASNase@HNFs) Reactor System with Enhanced Enzymatic Reusability and Stability Catalysis Letters. 2021,151:1191-1201 DOI:10.1007/s10562-020-03362-1
  • [24] Somturk B, Dayan S, Ozdemir N, Kalaycıoğlu Özpozan N (2022), Catalytic performance improvement with metal ion changes for efficient, stable, and reusable superoxide dismutase–metalphosphates hybrid nanoflowers, Chem Pap 76:4245–4260. https://doi.org/10.1007/s11696-022-02179-z
  • [25] Celik, C., Ildiz, N., Ocsoy, I., 2020. Gallic acid nanoflower immobilized membrane with peroxidase-like activity for m-cresol detection Sci. Rep. https://doi.org/10. 1038/s41598-020-59699-5
  • [26] Koca, F.D., Matz Muhy, H., Halıcı, M.G., 2024. Catalytic and Antioxidant Activity of Desmarestia menziesii Algae Extract Based Organic@İnorganic Hybrid Nanoflowers. Journal of Inorganic and Organometallic Polymers and Materials, 34 (3), 1281-1292
  • [27] Koca, F.D., Matz Muhy, H., Halıcı, M.G., Gozcelioglu, B., Konuklugil, B., 2022. Synthesis of hybrid nanoflowers using extract of Ascoseira mirabilis, a large brown parenchymatous macroalga endemic to the Antarctic Ocean, as the organic component and evaluation of their antimicrobial, catalytic, and antioxidant activities. Applied Nanoscience (2023) 13:4787–4794 https://doi.org/10.1007/s13204-022-02618-z
  • [28] Maurya, S.S, Nadar, S.S., Rathod, V.K. 2020. Dual activity of laccaselysine hybrid organic–inorganic nanoflowers for dye decolourization. Environ Technol Innov 19:100798. https://doi.org/10.1016/j. eti.2020.100798
  • [29] Baldemir A, Köse NB, Ildiz N et al (2017) Synthesis and characterization of green tea (Camellia sinensis (L.) Kuntze) extract and its major components-based nanofowers: a new strategy to enhance antimicrobial activity. RSC Adv 7:44303–44308. https://doi.org/ 10.1039/c7ra07618e
  • [30] Agarwal M, Bhadwal AS, Kumar N, Shrivastav A, Shrivastav BR, Singh MP, Zafar F, Tripathi RM (2016) Catalytic degradation of methylene blue by biosynthesised copper nanoflowers using F. benghalensis leaf extract. IET Nanobiotechnol 10:321–325. https://doi.org/10.1049/iet-nbt.2015.0098
  • [31] Demirbas A (2021) Comparison study of synthesized red (or blood) orange peels and juice extract-nanoflowers and their antimicrobial properties on fsh pathogen (Yersinia ruckeri). Indian J Microbiol 61:324–330. https://doi.org/10.1007/s12088-021-00945-3
  • [32] Gan J, Ashraf SS, Bilal M, Iqbal HM (2022) Biodegradation of environmental pollutants using catalase-based biocatalytic systems. Environ Res 214:113914. https://doi.org/10.1016/j.envres.2022. 113914
  • [33] Geltmeier, A., Rinner, B., Bade, D., Meditz, K., Witt, R., Bicker, U., Bludszuweit-Philipp, C., Maier, P., 2015.Characterization of Dynamic Behaviour of MCF7 and MCF10A Cells in Ultrasonic Field Using Modal and Harmonic Analyses. PLoS One. 2015; 10(8): e0134999.
  • [34] Somturk Yilmaz, B., 2024. Antimicrobial and Anticancer Activity of Gallic Acid–Cu(II) Hybrid Nanofowers and Gallic Acid–Zn(II) Hybrid Nanofowers. Journal of Inorganic and Organometallic Polymers and Materials https://doi.org/10.1007/s10904-024-03169-2
  • [35] Bor, E., Koca Caliskan, U., Anlas, C., Durbilmez, G.D., Bakirel, T., Ozdemir, N., 2022. Synthesis of Persea americana extract based hybrid nanoflowers as a new strategy to enhance hyaluronidase and gelatinase inhibitory activity and the evaluation of their toxicity potential, Inorg. Nano-Met.1–3, https://doi.org/10.1080/ 24701556.2022.2072342.

Quercetin/Fe3O4@Cu(II) Hybrid Structures Fabrication and Cytotoxic Activity

Yıl 2025, Cilt: 18 Sayı: 1, 59 - 72, 28.03.2025
https://doi.org/10.18185/erzifbed.1437504

Öz

Kaynakça

  • [1] Somturk Yilmaz, B., Bekci, H., Altiparmak, A., Uysal, S., Şenkardeş, İ., Zengin, G. 2024. Determination of anticancer activity and biosynthesis of Cu, Zn, and Co hybrid nanoflowers with Tribulus terrestris L. extract. Process Biochemistry. 138: 14-22
  • [2] Uras, I.S, Karslı, B., Konuklugil, B., Ocsoy, I., Demirbas, A. 2023. Organic–Inorganic Nanocomposites of Aspergillus terreus Extract and Its Compounds with Antimicrobial Properties. Sustainability 2023, 15(5), 4638; https://doi.org/10.3390/su15054638
  • [3] Dadi, S., Celik, C., Ocsoy, I., 2020. Gallic acid nanofower immobilized membrane with peroxidase like activity for m cresol detection. Gallic acid nanofower immobilized membrane with peroxidase like activity for m cresol detection. Scientific Reports. 10:16765
  • [4]Yoshida, H., Takamura, N., Shuto, T., Ogata, K., Tokunaga, J. ve Kawai, K., 2010, The citrus flavonoids hesperetin and naringenin block the lipolytic actions of TNF-α in mouse adipocytes, Biochemical and Biophysical Research Communications, 394, 728-732.
  • [5] Zeng, W., Jin, L., Zhang, F., Zhang, C. ve Liang, W., 2018, Naringenin as a potential immunomodulator in therapeutics, Pharmacological Research, 135 (2018), 122–126.
  • [6]Zhang, J.J., Dong, X., Cao, Y.Y., Yuan, Y. D., Yang, Y.B., Yan, Y.Q., vd., 2020, Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China, Allergy, 75, 1730–41. doi: 10.1111/all. 14238.
  • [7]Zhang, L., Song, L., Zhang, P., Liu, T., Zhou, L., Yang, G., Lin, R. ve Zhang, J., 2015, Solubilities of naringin and naringenin in different solvents and dissociation constants of naringenin, Journal of Chemical & Engineering Data, 60(3), 932-40. https://doi.org/10.1021/je501004g.
  • [8]Wang, M.J., Chao, P.D., Hou, Y.C. ve Hsiu, S.L., 2006, Pharmacokinetics and conjugation metabolism of naringin and naringenin in rats after single dose and multiple dose administrations, Journal of Food and Drug Analysis, 14(3), 247-253.
  • [9]Wang, N., Li, D., Lu, N.H., Yi, L., Huang, X.W. ve Gao, Z.H., 2010, Peroxynitrite and hemoglobinmediated nitrative/oxidative modification of human plasma protein: effects of some flavonoids, Journal of Asian Natural Products Research, 12(4), 257-64. https://doi.org/10.1080/10286021003620226.
  • [10]Wang, Y., Wang, S., Firempong, C.K., Zhang, H., Wang, M., Zhang, Y., Zhu, Y., Yu, J., Xu, X., 2017, Enhanced solubility and bioavailability o fnaringenin via liposomal nanoformulation: preparation and in vitro and in vivo evaluations, AAPS PharmSciTech, (2017) 18, 586–94. doi: 10.1208/s12249-016-0537-8.
  • [11]Wang, Z., Wang, S., Zhao, J., Yu, C., Hu, Y., Tu, Y., Yang, Z., Zheng, J., Wang, Y., Gao, Y., 2019, Naringenin ameliorates renovascular hypertensive renal damage by normalizing the balance of reninangiotensin system components in rats, International Journal of Medical Sciences, 16, 644– 53. doi: 10.7150/ijms.31075.
  • [12]Wilcox, L.J., Borradaile, N.M. ve Huff, M.W., 1999, Antiatherogenic properties of naringenin, a citrus flavonoid, Cardiovascular Drug Reviews,17:160-178.
  • [13]Yao, L.H., Jiang, Y.M., Shi, J., Tomas-Barberan, F.A., Datta N., Singanusong, R., Chen, S. S., 2004, Flavonoids in food and their health benefits, Plant Foods for Human Nutrition, 59(3), 113-22. https://doi.org/10.1007/s11130-004- 0049-7.
  • [14]Alam, M.A., Subhan, N., Rahman, M.M., Uddin, S.J., Reza, H.M. ve Sarker, S.D., 2014, Effect of citrus flavonoids, naringin and naringenin on metabolic syndrome and their mechanisms of action, Advances, and Nutrition, 5(4), 404- 17. https://doi.org/10.3945/an.113.005603.
  • [15]Alberca, R.W., Teixeira, F.M.E., Beserra, D.R., de Oliveira, E.A., de Andrade, M.M.S., Pietrobon, A.J. ve Sato, M.N., 2020, Perspective: the potential effects of naringenin in COVID19, Frontiers in Immunology, (2020) 11, 1.
  • [16]Bourian, M., Runkel, M., Krisp, A., Tegtmeier, M., Freudenstein, J. ve Legrum, W., 1999, Naringenin and interindividual variability in interaction of coumarin with grapefruit juice, Experimental, and Toxicologic Pathology, (1999) 51, 289–93. doi: 10.1016/S0940- 2993(99)80008-6.
  • [17]Breinholt, V.M., Svendsen, G.W., Dragsted, L.O. ve Hossaini, A., 2008, The citrus-derived flavonoid naringenin exerts uterotrophic effects in female mice at human relevant doses, Basic and Clinical Pharmacology and Toxicology, (2008) 94, 30–6. doi: 10.1111/ j.1742- 7843.2004.pto_940106.x.
  • [18] Lee, H., Shao, H., Huang, Y. , Kwak, B., 2005. “Synthesis of MRI contrast agent by coating superparamagnetic iron oxide with chitosan,” IEEE Transactions on Magnetics, vol. 41, no. 10, pp. 4102–4104
  • [19] Alhayali, N.I., Kalaycıoglu Ozpozan, N., Dayan, S., Ozdemir, N., Somtürk Yılmaz, B., 2021. Catalase/Fe3O4@Cu2+ hybrid biocatalytic nanoflowers fabrication and efficiency in the reduction of organic pollutants. Polyhedron,194,114888
  • [20]Somturk B, Hançer M, Öcsoy İ, Ozdemir N (2015). Synthesis of copper ion incorporated horseradish peroxidase based hybrid nanoflowers for enhanced catalytic activity and stability. Dalton Trans., 44(31):13845-13852. doi:10.1039/c5dt01250c
  • [21] Somturk B, Yilmaz I, Altinkaynak C, Karatepe A, Özdemir N, Ocsoy I (2016) Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme Microb Technol 86:134–142. doi:10.1016/j.enzmictec.2015.09.005
  • [22] Ge, J., Lei, J.D., Zare, R.N. (2012), Protein-inorganic hybrid nanoflowers Nat. Nanotechnol., 7 , 428-432
  • [23]Noma, S.A., Somturk Yilmaz, B., Ulu, A., Ozdemir, N., Ateş, B. Development of l‐asparaginase@hybrid Nanoflowers (ASNase@HNFs) Reactor System with Enhanced Enzymatic Reusability and Stability Catalysis Letters. 2021,151:1191-1201 DOI:10.1007/s10562-020-03362-1
  • [24] Somturk B, Dayan S, Ozdemir N, Kalaycıoğlu Özpozan N (2022), Catalytic performance improvement with metal ion changes for efficient, stable, and reusable superoxide dismutase–metalphosphates hybrid nanoflowers, Chem Pap 76:4245–4260. https://doi.org/10.1007/s11696-022-02179-z
  • [25] Celik, C., Ildiz, N., Ocsoy, I., 2020. Gallic acid nanoflower immobilized membrane with peroxidase-like activity for m-cresol detection Sci. Rep. https://doi.org/10. 1038/s41598-020-59699-5
  • [26] Koca, F.D., Matz Muhy, H., Halıcı, M.G., 2024. Catalytic and Antioxidant Activity of Desmarestia menziesii Algae Extract Based Organic@İnorganic Hybrid Nanoflowers. Journal of Inorganic and Organometallic Polymers and Materials, 34 (3), 1281-1292
  • [27] Koca, F.D., Matz Muhy, H., Halıcı, M.G., Gozcelioglu, B., Konuklugil, B., 2022. Synthesis of hybrid nanoflowers using extract of Ascoseira mirabilis, a large brown parenchymatous macroalga endemic to the Antarctic Ocean, as the organic component and evaluation of their antimicrobial, catalytic, and antioxidant activities. Applied Nanoscience (2023) 13:4787–4794 https://doi.org/10.1007/s13204-022-02618-z
  • [28] Maurya, S.S, Nadar, S.S., Rathod, V.K. 2020. Dual activity of laccaselysine hybrid organic–inorganic nanoflowers for dye decolourization. Environ Technol Innov 19:100798. https://doi.org/10.1016/j. eti.2020.100798
  • [29] Baldemir A, Köse NB, Ildiz N et al (2017) Synthesis and characterization of green tea (Camellia sinensis (L.) Kuntze) extract and its major components-based nanofowers: a new strategy to enhance antimicrobial activity. RSC Adv 7:44303–44308. https://doi.org/ 10.1039/c7ra07618e
  • [30] Agarwal M, Bhadwal AS, Kumar N, Shrivastav A, Shrivastav BR, Singh MP, Zafar F, Tripathi RM (2016) Catalytic degradation of methylene blue by biosynthesised copper nanoflowers using F. benghalensis leaf extract. IET Nanobiotechnol 10:321–325. https://doi.org/10.1049/iet-nbt.2015.0098
  • [31] Demirbas A (2021) Comparison study of synthesized red (or blood) orange peels and juice extract-nanoflowers and their antimicrobial properties on fsh pathogen (Yersinia ruckeri). Indian J Microbiol 61:324–330. https://doi.org/10.1007/s12088-021-00945-3
  • [32] Gan J, Ashraf SS, Bilal M, Iqbal HM (2022) Biodegradation of environmental pollutants using catalase-based biocatalytic systems. Environ Res 214:113914. https://doi.org/10.1016/j.envres.2022. 113914
  • [33] Geltmeier, A., Rinner, B., Bade, D., Meditz, K., Witt, R., Bicker, U., Bludszuweit-Philipp, C., Maier, P., 2015.Characterization of Dynamic Behaviour of MCF7 and MCF10A Cells in Ultrasonic Field Using Modal and Harmonic Analyses. PLoS One. 2015; 10(8): e0134999.
  • [34] Somturk Yilmaz, B., 2024. Antimicrobial and Anticancer Activity of Gallic Acid–Cu(II) Hybrid Nanofowers and Gallic Acid–Zn(II) Hybrid Nanofowers. Journal of Inorganic and Organometallic Polymers and Materials https://doi.org/10.1007/s10904-024-03169-2
  • [35] Bor, E., Koca Caliskan, U., Anlas, C., Durbilmez, G.D., Bakirel, T., Ozdemir, N., 2022. Synthesis of Persea americana extract based hybrid nanoflowers as a new strategy to enhance hyaluronidase and gelatinase inhibitory activity and the evaluation of their toxicity potential, Inorg. Nano-Met.1–3, https://doi.org/10.1080/ 24701556.2022.2072342.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makromoleküler Malzemeler
Bölüm Makaleler
Yazarlar

Burcu Somtürk Yılmaz 0000-0002-2775-3083

Erken Görünüm Tarihi 26 Mart 2025
Yayımlanma Tarihi 28 Mart 2025
Gönderilme Tarihi 15 Şubat 2024
Kabul Tarihi 7 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 1

Kaynak Göster

APA Somtürk Yılmaz, B. (2025). Quercetin/Fe3O4@Cu(II) Hybrid Structures Fabrication and Cytotoxic Activity. Erzincan University Journal of Science and Technology, 18(1), 59-72. https://doi.org/10.18185/erzifbed.1437504