Araştırma Makalesi
BibTex RIS Kaynak Göster

Asses to Genetic Diversity in Cultivated Forage Pea (Pisum sativum var. arvense L.) Genotypes Through SSR Markers

Yıl 2025, Cilt: 18 Sayı: 1, 98 - 114, 28.03.2025
https://doi.org/10.18185/erzifbed.1478875

Öz

Forage pea (Pisum sativum var. arvense L.) is an important legume species with high nutritional value used in animal feed nutrition around the world. Forage pea have been grown for animal feeding in the high altitude of the Eastern Anatolia Region for a long time. However, commercial varieties of forage peas are replacing local varieties, especially due to easier seed availability. Therefore, it is aimed in this study is determine of genetic diversity and genome size variation of some forage pea commercial and landraces populations by SSR markers. This study was carried out in 2021 with 18 populations in cultivated in Turkey. The 11 SSR markers successfully produced total 66 polymorphic bands by percentage of 89,2% for 18 forage pea (Pisum sativum var. arvense L.) populations. The markers produced a total of 66 alleles. These polymorphic alleles were ranged from 3 to 11 with average of 6. Genetic diversity dendrogram was created forage pea cultivars populations. Generally, seven commercial cultivars and eleven populations of forage pea seperated each other as two main groups. As a result of the study, genetic differences were found between pea varieties, and it was concluded that local varieties should be evaluated in breeding programs.

Etik Beyan

There are no ethical issues regarding the publication of this study.

Destekleyen Kurum

Erzurum Technical University

Teşekkür

We thank the High Technology Research and Application Center (YUTAM) for providing research facilities to carry out this research work.

Kaynakça

  • [1] Rana, J. C., Rana, M., Sharma, V., Nag, A., Chahota, R. K., Sharma, T. R., (2017) Genetic diversity and structure of pea (Pisum sativum L.) germplasm based on morphological and SSR markers. Plant molecular biology reporter, 35 118-129. https://doi.org/10.1007/s11105-016-1006-y
  • [2] Demirkol, G., Yilmaz, N., (2019) Forage pea (Pisum sativum var. arvense L.) landraces reveal morphological and genetic diversities. Turkish Journal of Botany, 43(3) 331-342. https://doi: 10.3906/bot-1812-12
  • [3] Bastianelli, D., Grosjean, F., Peyronnet, C., Duparque, M., Regnier, J. M., (1998) Feeding value of pea (Pisum sativum, L.) 1. Chemical composition of different categories of pea. Animal Science, 67(3) 609-619. https://doi.org/10.1017/S1357729800033051
  • [4] Bouhadida, M., Srarfi, F., Saadi, I., Kharrat, M., (2013) Molecular characterization of pea (Pisum sativum L.) using microsatellite markers. Journal of Applied Chemistry, 5(1) 57-61.
  • [5] Kadıoğlu, S., Tan, M., (2018) Yield and some characteristics of forage winter pea varieties sown in different dates in erzurum conditions. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi 27(1) 25-32.
  • [6] Ertus, M.M., Sensoy, S., (2021) Determınatıon of genetıc dıversıty ın some local alfalfa (Medicago sativa l.) Ecotypes usıng ssr markers. Journal of Animal Plant Sciences 31(2) 522-528. https://doi.org/10.36899/JAPS.2021.2.0241
  • [7] Esquinas-Alcázar, J., (2005) Protecting crop genetic diversity for food security political, ethical and technical challenges. Nature Review Genetics, 6 946–95. https://doi.org/10.1038/nrg1729
  • [8] Kim, H.J., Yeo, S.S., Han, D.Y., Park, Y.H., (2015) Interspecific transferability of watermelon EST-SSRs assessed by genetic relationship analysis of cucurbitaceous crops. Korean Journal of Horticultural Science and Technology 33 93-105.
  • [9] Nasiri, J. Haghnazari, A. Saba, J. (2009) SSR diversity on field peas. African Journal Botany 8(15) 3405–3417. [10] Pritchard, J.K. Stevens, M. Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155 945–959. https://doi.org/10.1093/genetics/155.2.945
  • [11] Evanno, G., Regnaut, S., Goudet, J., (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 14 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  • [12] İlhan, D., (2018) The evaluation of population structure in some alfalfa (Medicago sativa) ecotypes demonstrating distribution in Eastern Anatolia region. Mediterranean Agricultural Sci. 31(1) 61-65. https://doi.org/10.29136/mediterranean.376561
  • [13] Peakall, R., Smouse, P.E., (2001) GenAlEx V6: genetic analysis in excel population genetic software for teaching and research. Australian National University, Canberra http://wwwanueduau/BoZo/ GenAlEx
  • [14] Nei, M., Tajima, F., Tateno, Y., (1983) Accuracy of estimated phylogenetic trees from molecular data. Journal of Molecular Evolution, 19 153-170. https://doi.org/10.1007/BF02300753
  • [15] Huson, D. H., Linz, S., (2016) Autumn algorithm computation of hybridization networks for realistic phylogenetic trees. IEEE/ACM transactions on computational biology and bioinformatics, 15(2) 398-410.
  • [16] İlhan, D., Li, X., Brummer, E.C., Şakiroğlu, M., (2016) Genetic diversity and population structure of tetraploid accessions of the Medicago sativa species complex. Crop Science 56(3), 1146-1156. https://doi.org/10.2135/cropsci2015.12.0750
  • [17] Baranger, A., Aubert, G., Arnau, G., Lainé, A. L., Deniot, G., Potier, J., Weinachter, C., Lejeune-Hénaut, I., Lallemand, J., Burstin, J., (2004) Genetic diversity within Pisum sativum using protein-and PCR-based markers. Theoretical and Applied Genetics, 108(7) 1309-1321. https://doi.org/10.1007/s00122-003-1540-5
  • [18] Sharma, R., Dar, A.A., Mahajan, R., Sharma, S., (2020) Molecular and Biochemical characterization of Indian germplasm of Pisum sativum L. Proceedings of the National Academy of Sciences, India Section Biology Sciences, 90(1) 103-111. https://doi.org/10.1007/s40011-018-01069-3
  • [19] Esposito, M.A., Milanesi, L.A., Martin, E.A., Cravero, V.P., Lopez, A.F.S., Cointry, E.L., (2007) Principal component analysis based on morphological characters in pea (Pisum sativum). International Journal of Plant Breeding and Genetics, 1(2) 135-137.
  • [20] Baloch. F.S., Alsaleh, A., de Miera, L.E., Hatipoğlu, R., Çiftçi, V., Karaköy, T., Yıldız, M., Özkan, H., (2015) DNA based iPBS-retrotransposon markers for investigating the population structure of pea (Pisum sativum L.) germplasm from Turkey. Biochemical Systematics and Ecology, 61 244-52. https://doi.org/10.1016/j.bse.2015.06.017
  • [21] Loridon, K., Mcphee, K., Morin, J., Dubreuil, P., Pilet-Nayel, M.L., Aubert, G., Rameau, C., Baranger, A., Coyne, C., Lejeune-Hènaut, I., Burstin, J., (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theoretical and Applied Genetics, 111 1022-1031. https://doi.org/10.1007/s00122-005-0014-3
  • [22] Smýkal, P., Hýbl, M., Corander, J., Jarkovský, J., Flavell, A. J., Griga, M., (2008) Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theoretical and Applied Genetics, 117 413-424. https://doi.org/10.1007/s00122-008-0785-4
  • [23] Xu-Xiao, Z., Jian-Ping, G., Shu-Min, W., Qing-Chang, L., (2008) Genetic diversity among Chinese pea (Pisum sativum L.) landraces as revealed by SSR markers. Acta Agronomica Sinica, 34(8) 1330-1338. https://doi.org/10.1016/S1875-2780(08)60045-0
  • [24] Sarikamis, G., Yanmaz, R., Ermis, S., Bakir, M., Yuksel, C., (2010) Genetic characterization of pea (Pisum sativum) germplasm from Turkey using morphological and SSR markers. Genetics and Molecular Research, 9(1) 591-600. https://doi.org/10.4238/vol9-1gmr762
  • [25] Cieslarova, J., Hýbl, M., Griga, M., Smýkal, P., (2012) Molecular analysis of temporal genetic structuring in pea (Pisum sativum L.) cultivars bred in the Czech Republic and in former Czechoslovakia since the mid-20th century. Czech J. Genet. Plant Breed, 48(2) 61-73 https://doi: 10.17221/127/2011-CJGPB
  • [26] Handerson, C., Noren, S. K., Wricha, T., Meetei, N. T., Khanna, V. K., Pattanayak, A., Datt, S., Ray Choudhury, P., Kumar, M., (2014) Assessment of genetic diversity in pea (Pisum sativum L.) using morphological and molecular markers. Indian Journal of Genetics and Plant Breeding, 74(02) 205-212.
  • [27] Jain, S., Kumar, A., Mamidi, S., McPhee, K., (2014) Genetic diversity and population structure among pea (Pisum sativum L.) cultivars as revealed by simple sequence repeat and novel genic markers. Molecular biotechnology, 56 925-938. https://doi.org/10.1007/s12033-014-9772-y
  • [28] Tahir, N. A., Lateef, D. D., Omer, D. A., Kareem, S. H., Ahmad, D. A., Khal, L. H., (2018) Genetic diversity and structure analysis of pea grown in Iraq using microsatellite markers. Jordan Journal of Biological Sciences, 11(2) 201-207.
  • [29] Hanci, F., (2019) Genetic variability in peas (L.) from Turkey assessed with molecular and morphological markers. Folia horticulturae, 31(1) 101-116. https://doı: 10.2478/fhort-2019-0007
  • [30] Ahmad, S., Kaur, S., Lamb-Palmer, N. D., Lefsrud, M., Singh, J., (2015) Genetic diversity and population structure of Pisum sativum accessions for the marker-trait association of lipid content. The Crop Journal, 3(3) 238-245.https://doi.org/10.1016/j.cj.2015.03.005
  • [31] Ford, R., Le Roux, K., Itman, C., Brouwer, J. B., Taylor, P. W., (2002) Diversity analysis and genotyping in Pisum with sequence tagged microsatellite site (STMS) primers. Euphytica,124 397-405. https://doi.org/10.1023/A:1015752907108.
  • [32] Nisar, M., Khan, A., Wadood, S. F., Shah, A. A., Hanci, F., (2017) Molecular characterization of edible pea through EST-SSR markers. Turkish Journal of Botany, 41(4) 338-346. doi:10.3906/bot-1608-17
  • [33] Hanci, F., Gökçe, A.F., (2016) Molecular characterization of Turkish onion germplasm using SSR markers. Czech. J. Genet. Plant Breeding, 52 71-76. https://doı:10.17221/162/2015-cjgpb
  • [34] Tar'an, B., Zhang, C., Warkentin, T., Tullu, A., Vandenberg, A., (2005) Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on molecular markers, and morphological and physiological characters. Genome, 48(2) 257-272. https://doi.org/10.1139/g04-114
  • [35] Burstin, J., Deniot, G., Potier, J., Weinachter, C., Aubert, G., Barranger, A., (2001) Microsatellite polymorphism in Pisum sativum. Plant Breeding, 120(4) 311-317. https://doi.org/10.1046/j.1439-0523.2001.00608.x
  • [36] Haghnazari, A., Samimifard, R., Najafi, J., & Mardi, M., (2005) Genetic diversity in pea (Pisum sativum L.) accessions detected by sequence tagged microsatellite markers. Journal of Genetics and Breeding, 59(2) 145.
  • [37] Choudhury, P. R., Tanveer, H., Dixit, G. P., (2007) Identification and detection of genetic relatedness among important varieties of pea (Pisum sativum L.) grown in India. Genetica, 130 183-191 .https://doi.org/10.1007/s10709-006-9005-9
  • [38] Haliloglu, K., Turkoglu, A., Tan, M., Poczai, P., (2022) SSR-based molecular identification and population structure analysis for forage pea (Pisum sativum var. arvense L.) landraces. Genes, 13(6) 1086. https://doi.org/10.3390/genes13061086
  • [39] Ahmad, S., Singh, M., Lamb-Palmer, N. D., Lefsrud, M., Singh, J. (2012). Assessment of genetic diversity in 35 Pisum sativum accessions using microsatellite markers. Canadian Journal of Plant Science, 92(6) 1075-1081. https://doi.org/10.4141/cjps2011-261
Yıl 2025, Cilt: 18 Sayı: 1, 98 - 114, 28.03.2025
https://doi.org/10.18185/erzifbed.1478875

Öz

Kaynakça

  • [1] Rana, J. C., Rana, M., Sharma, V., Nag, A., Chahota, R. K., Sharma, T. R., (2017) Genetic diversity and structure of pea (Pisum sativum L.) germplasm based on morphological and SSR markers. Plant molecular biology reporter, 35 118-129. https://doi.org/10.1007/s11105-016-1006-y
  • [2] Demirkol, G., Yilmaz, N., (2019) Forage pea (Pisum sativum var. arvense L.) landraces reveal morphological and genetic diversities. Turkish Journal of Botany, 43(3) 331-342. https://doi: 10.3906/bot-1812-12
  • [3] Bastianelli, D., Grosjean, F., Peyronnet, C., Duparque, M., Regnier, J. M., (1998) Feeding value of pea (Pisum sativum, L.) 1. Chemical composition of different categories of pea. Animal Science, 67(3) 609-619. https://doi.org/10.1017/S1357729800033051
  • [4] Bouhadida, M., Srarfi, F., Saadi, I., Kharrat, M., (2013) Molecular characterization of pea (Pisum sativum L.) using microsatellite markers. Journal of Applied Chemistry, 5(1) 57-61.
  • [5] Kadıoğlu, S., Tan, M., (2018) Yield and some characteristics of forage winter pea varieties sown in different dates in erzurum conditions. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi 27(1) 25-32.
  • [6] Ertus, M.M., Sensoy, S., (2021) Determınatıon of genetıc dıversıty ın some local alfalfa (Medicago sativa l.) Ecotypes usıng ssr markers. Journal of Animal Plant Sciences 31(2) 522-528. https://doi.org/10.36899/JAPS.2021.2.0241
  • [7] Esquinas-Alcázar, J., (2005) Protecting crop genetic diversity for food security political, ethical and technical challenges. Nature Review Genetics, 6 946–95. https://doi.org/10.1038/nrg1729
  • [8] Kim, H.J., Yeo, S.S., Han, D.Y., Park, Y.H., (2015) Interspecific transferability of watermelon EST-SSRs assessed by genetic relationship analysis of cucurbitaceous crops. Korean Journal of Horticultural Science and Technology 33 93-105.
  • [9] Nasiri, J. Haghnazari, A. Saba, J. (2009) SSR diversity on field peas. African Journal Botany 8(15) 3405–3417. [10] Pritchard, J.K. Stevens, M. Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155 945–959. https://doi.org/10.1093/genetics/155.2.945
  • [11] Evanno, G., Regnaut, S., Goudet, J., (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 14 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  • [12] İlhan, D., (2018) The evaluation of population structure in some alfalfa (Medicago sativa) ecotypes demonstrating distribution in Eastern Anatolia region. Mediterranean Agricultural Sci. 31(1) 61-65. https://doi.org/10.29136/mediterranean.376561
  • [13] Peakall, R., Smouse, P.E., (2001) GenAlEx V6: genetic analysis in excel population genetic software for teaching and research. Australian National University, Canberra http://wwwanueduau/BoZo/ GenAlEx
  • [14] Nei, M., Tajima, F., Tateno, Y., (1983) Accuracy of estimated phylogenetic trees from molecular data. Journal of Molecular Evolution, 19 153-170. https://doi.org/10.1007/BF02300753
  • [15] Huson, D. H., Linz, S., (2016) Autumn algorithm computation of hybridization networks for realistic phylogenetic trees. IEEE/ACM transactions on computational biology and bioinformatics, 15(2) 398-410.
  • [16] İlhan, D., Li, X., Brummer, E.C., Şakiroğlu, M., (2016) Genetic diversity and population structure of tetraploid accessions of the Medicago sativa species complex. Crop Science 56(3), 1146-1156. https://doi.org/10.2135/cropsci2015.12.0750
  • [17] Baranger, A., Aubert, G., Arnau, G., Lainé, A. L., Deniot, G., Potier, J., Weinachter, C., Lejeune-Hénaut, I., Lallemand, J., Burstin, J., (2004) Genetic diversity within Pisum sativum using protein-and PCR-based markers. Theoretical and Applied Genetics, 108(7) 1309-1321. https://doi.org/10.1007/s00122-003-1540-5
  • [18] Sharma, R., Dar, A.A., Mahajan, R., Sharma, S., (2020) Molecular and Biochemical characterization of Indian germplasm of Pisum sativum L. Proceedings of the National Academy of Sciences, India Section Biology Sciences, 90(1) 103-111. https://doi.org/10.1007/s40011-018-01069-3
  • [19] Esposito, M.A., Milanesi, L.A., Martin, E.A., Cravero, V.P., Lopez, A.F.S., Cointry, E.L., (2007) Principal component analysis based on morphological characters in pea (Pisum sativum). International Journal of Plant Breeding and Genetics, 1(2) 135-137.
  • [20] Baloch. F.S., Alsaleh, A., de Miera, L.E., Hatipoğlu, R., Çiftçi, V., Karaköy, T., Yıldız, M., Özkan, H., (2015) DNA based iPBS-retrotransposon markers for investigating the population structure of pea (Pisum sativum L.) germplasm from Turkey. Biochemical Systematics and Ecology, 61 244-52. https://doi.org/10.1016/j.bse.2015.06.017
  • [21] Loridon, K., Mcphee, K., Morin, J., Dubreuil, P., Pilet-Nayel, M.L., Aubert, G., Rameau, C., Baranger, A., Coyne, C., Lejeune-Hènaut, I., Burstin, J., (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theoretical and Applied Genetics, 111 1022-1031. https://doi.org/10.1007/s00122-005-0014-3
  • [22] Smýkal, P., Hýbl, M., Corander, J., Jarkovský, J., Flavell, A. J., Griga, M., (2008) Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theoretical and Applied Genetics, 117 413-424. https://doi.org/10.1007/s00122-008-0785-4
  • [23] Xu-Xiao, Z., Jian-Ping, G., Shu-Min, W., Qing-Chang, L., (2008) Genetic diversity among Chinese pea (Pisum sativum L.) landraces as revealed by SSR markers. Acta Agronomica Sinica, 34(8) 1330-1338. https://doi.org/10.1016/S1875-2780(08)60045-0
  • [24] Sarikamis, G., Yanmaz, R., Ermis, S., Bakir, M., Yuksel, C., (2010) Genetic characterization of pea (Pisum sativum) germplasm from Turkey using morphological and SSR markers. Genetics and Molecular Research, 9(1) 591-600. https://doi.org/10.4238/vol9-1gmr762
  • [25] Cieslarova, J., Hýbl, M., Griga, M., Smýkal, P., (2012) Molecular analysis of temporal genetic structuring in pea (Pisum sativum L.) cultivars bred in the Czech Republic and in former Czechoslovakia since the mid-20th century. Czech J. Genet. Plant Breed, 48(2) 61-73 https://doi: 10.17221/127/2011-CJGPB
  • [26] Handerson, C., Noren, S. K., Wricha, T., Meetei, N. T., Khanna, V. K., Pattanayak, A., Datt, S., Ray Choudhury, P., Kumar, M., (2014) Assessment of genetic diversity in pea (Pisum sativum L.) using morphological and molecular markers. Indian Journal of Genetics and Plant Breeding, 74(02) 205-212.
  • [27] Jain, S., Kumar, A., Mamidi, S., McPhee, K., (2014) Genetic diversity and population structure among pea (Pisum sativum L.) cultivars as revealed by simple sequence repeat and novel genic markers. Molecular biotechnology, 56 925-938. https://doi.org/10.1007/s12033-014-9772-y
  • [28] Tahir, N. A., Lateef, D. D., Omer, D. A., Kareem, S. H., Ahmad, D. A., Khal, L. H., (2018) Genetic diversity and structure analysis of pea grown in Iraq using microsatellite markers. Jordan Journal of Biological Sciences, 11(2) 201-207.
  • [29] Hanci, F., (2019) Genetic variability in peas (L.) from Turkey assessed with molecular and morphological markers. Folia horticulturae, 31(1) 101-116. https://doı: 10.2478/fhort-2019-0007
  • [30] Ahmad, S., Kaur, S., Lamb-Palmer, N. D., Lefsrud, M., Singh, J., (2015) Genetic diversity and population structure of Pisum sativum accessions for the marker-trait association of lipid content. The Crop Journal, 3(3) 238-245.https://doi.org/10.1016/j.cj.2015.03.005
  • [31] Ford, R., Le Roux, K., Itman, C., Brouwer, J. B., Taylor, P. W., (2002) Diversity analysis and genotyping in Pisum with sequence tagged microsatellite site (STMS) primers. Euphytica,124 397-405. https://doi.org/10.1023/A:1015752907108.
  • [32] Nisar, M., Khan, A., Wadood, S. F., Shah, A. A., Hanci, F., (2017) Molecular characterization of edible pea through EST-SSR markers. Turkish Journal of Botany, 41(4) 338-346. doi:10.3906/bot-1608-17
  • [33] Hanci, F., Gökçe, A.F., (2016) Molecular characterization of Turkish onion germplasm using SSR markers. Czech. J. Genet. Plant Breeding, 52 71-76. https://doı:10.17221/162/2015-cjgpb
  • [34] Tar'an, B., Zhang, C., Warkentin, T., Tullu, A., Vandenberg, A., (2005) Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on molecular markers, and morphological and physiological characters. Genome, 48(2) 257-272. https://doi.org/10.1139/g04-114
  • [35] Burstin, J., Deniot, G., Potier, J., Weinachter, C., Aubert, G., Barranger, A., (2001) Microsatellite polymorphism in Pisum sativum. Plant Breeding, 120(4) 311-317. https://doi.org/10.1046/j.1439-0523.2001.00608.x
  • [36] Haghnazari, A., Samimifard, R., Najafi, J., & Mardi, M., (2005) Genetic diversity in pea (Pisum sativum L.) accessions detected by sequence tagged microsatellite markers. Journal of Genetics and Breeding, 59(2) 145.
  • [37] Choudhury, P. R., Tanveer, H., Dixit, G. P., (2007) Identification and detection of genetic relatedness among important varieties of pea (Pisum sativum L.) grown in India. Genetica, 130 183-191 .https://doi.org/10.1007/s10709-006-9005-9
  • [38] Haliloglu, K., Turkoglu, A., Tan, M., Poczai, P., (2022) SSR-based molecular identification and population structure analysis for forage pea (Pisum sativum var. arvense L.) landraces. Genes, 13(6) 1086. https://doi.org/10.3390/genes13061086
  • [39] Ahmad, S., Singh, M., Lamb-Palmer, N. D., Lefsrud, M., Singh, J. (2012). Assessment of genetic diversity in 35 Pisum sativum accessions using microsatellite markers. Canadian Journal of Plant Science, 92(6) 1075-1081. https://doi.org/10.4141/cjps2011-261
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Hücresi ve Moleküler Biyoloji
Bölüm Makaleler
Yazarlar

Büşra Yazıcılar 0000-0003-2465-7579

Pınar Uysal Bu kişi benim 0000-0002-0998-4785

Erken Görünüm Tarihi 26 Mart 2025
Yayımlanma Tarihi 28 Mart 2025
Gönderilme Tarihi 5 Mayıs 2024
Kabul Tarihi 19 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 1

Kaynak Göster

APA Yazıcılar, B., & Uysal, P. (2025). Asses to Genetic Diversity in Cultivated Forage Pea (Pisum sativum var. arvense L.) Genotypes Through SSR Markers. Erzincan University Journal of Science and Technology, 18(1), 98-114. https://doi.org/10.18185/erzifbed.1478875