Araştırma Makalesi
BibTex RIS Kaynak Göster

Eşzamanlı RF ve DC Magnetron Saçtırma Tekniği ile Üretilen Bir Cr Katkılı Demir Oksit İnce Filmin Bazı Fiziksel Özellikleri

Yıl 2025, Cilt: 18 Sayı: 1, 129 - 139, 28.03.2025
https://doi.org/10.18185/erzifbed.1523374

Öz

Demir oksit, çeşitli yapısal ve morfolojik formları nedeniyle son zamanlarda büyük ilgi görmüş ve ultra yüksek manyetik depolama, manyeto-optik sensörler, nem sensörleri ve gaz sensörleri gibi çeşitli teknolojilerde ilerlemelere yol açmıştır. Bu araştırmada, eşzamanlı RF ve DC magnetron saçtırma kullanılarak bir cam altlık üzerinde krom katkılı ince bir demir oksit filmi üretilmiştir. Ortaya çıkan ince filmin optik, yapısal, elementel ve yüzey özellikleri UV-VIS spektroskopi, XRD, XPS, AFM ve SEM kullanılarak kapsamlı bir şekilde araştırılmıştır. Optik soğurma ölçümlerine dayanarak bant aralığı enerji değeri hesaplandı ve 2,12 eV olarak bulundu. İyi bir kristal yapı gösteren ince filmin yapısını incelemek için X-ışını kırınımı (XRD) kullanılmıştır. JCPDS Kart No. 33-0664 ile doğrulandığı üzere, çeşitli açılardaki göze çarpan kırınım pikleri, Fe2O3'ün normal hematit fazının spesifik düzlemlerine karşılık geldiği gözlemlenmiştir. (104) piki, hematit fazının kuvvetli bir şekilde oluştuğunu göstermiştir. XPS spektrum analizi ince filmde demir, oksijen ve kromun varlığını doğrulamıştır. Basit bir metodolojisi ile yürütülen bu çalışma, Fe2O3'ün krom safsızlığı katkılama sürecine ilişkin değerli bilgiler sağlayarak yapısal ve morfolojik özelliklerinin daha derinlemesine anlaşılmasına katkıda bulunmaktadır.

Etik Beyan

Sayın Editör, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi'nde yayınlanmak üzere hazırlamış olduğumuz bir makaleyi size gönderiyorum. Makale “Some Physical Attributes of a Cr-Doped Iron Oxide Thin Film Produced by Simultaneous RF and DC Magnetron Sputtering Technique” başlığını taşıyor. Bu yazının başka bir yerde yayınlanmadığını ve başka bir dergi tarafından değerlendirme aşamasında olmadığını onaylıyoruz. Tüm yazarlar taslağın son halini okuyup onayladılar ve derginize gönderilmesini kabul ettiler. Değerlendirmeniz için çok teşekkürler. Saygılarımla.

Destekleyen Kurum

Yok

Proje Numarası

Yok

Teşekkür

Yok

Kaynakça

  • 1. Abdulnabi, G. and A.M. Juda, Characterization and synthesis of α-Fe2O3 nanoparticles and α-Fe2O3/CuO nanocomposite by hydrothermal method and application them in a solar cell. Journal of Survey in Fisheries Sciences, 2023. 10(3S): p. 4224-4234.
  • 2. Ateş, T., et al., Ni Katkısının Fe2O3’ün Yapısal Özellikleri Üzerine Etkilerinin Araştırılması. International Journal of Innovative Engineering Applications, 2021. 5(2): p. 81-87.
  • 3. Domacena, A.M.G., C.L.E. Aquino, and M.D.L. Balela, Photo-Fenton degradation of methyl orange using hematite (α-Fe2O3) of various morphologies. Materials Today: Proceedings, 2020. 22: p. 248-254.
  • 4. Haridas, V., et al., Ultrahigh specific capacitance of α-Fe2O3 nanorods-incorporated defect-free graphene nanolayers. Energy, 2021. 221: p. 119743.
  • 5. Mizuno, S. and H. Yao, On the electronic transitions of α-Fe2O3 hematite nanoparticles with different size and morphology: Analysis by simultaneous deconvolution of UV–vis absorption and MCD spectra. Journal of Magnetism and Magnetic Materials, 2021. 517: p. 167389.
  • 6. Xu, Y., et al., Synthesis and characterization of single-crystalline α-Fe2O3 nanoleaves. Physica E: Low-dimensional Systems and Nanostructures, 2009. 41(5): p. 806-811.
  • 7. Popov, N., et al., Influence of low-spin Co3+ for high-spin Fe3+ substitution on the structural, magnetic, optical and catalytic properties of hematite (α-Fe2O3) nanorods. Journal of physics and chemistry of solids, 2021. 152: p. 109929.
  • 8. Miller, E.L., et al., Development of reactively sputtered metal oxide films for hydrogen-producing hybrid multijunction photoelectrodes. Solar energy materials and solar cells, 2005. 88(2): p. 131-144.
  • 9. Emin, S., et al., Photoelectrochemical water splitting with porous α-Fe2O3 thin films prepared from Fe/Fe-oxide nanoparticles. Applied Catalysis A: General, 2016. 523: p. 130-138.
  • 10. Annamalai, A., et al., Bifunctional TiO2 underlayer for α-Fe 2 O 3 nanorod based photoelectrochemical cells: enhanced interface and Ti 4+ doping. Journal of Materials Chemistry A, 2015. 3(9): p. 5007-5013.
  • 11. Hu, Y.-S., et al., Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chemistry of Materials, 2008. 20(12): p. 3803-3805.
  • 12. Wang, L., C.-Y. Lee, and P. Schmuki, Ti and Sn co-doped anodic α-Fe2O3 films for efficient water splitting. Electrochemistry communications, 2013. 30: p. 21-25.
  • 13. Kumar Pathak, D., et al., Raman area-and thermal-mapping studies of faceted nano-crystalline α-Fe2O3 thin films deposited by spray pyrolysis. Canadian Journal of Chemistry, 2022. 100(7): p. 507-511.
  • 14. Abedi, S.P., M.B. Rahmani, and F. Rezaii, α-Fe2O3 thin films deposited by a facile spray pyrolysis technique for enhanced ethanol sensing. Physica Scripta, 2023. 98(5): p. 055901.
  • 15. Huang, M.-C., et al., Magnetron sputtering process of carbon-doped α-Fe2O3 thin films for photoelectrochemical water splitting. Journal of Alloys and Compounds, 2015. 636: p. 176-182. 16. Ma, Y., et al., The growth mode of α-Fe2O3 thin films by DC magnetron sputtering. Vacuum, 2021. 194: p. 110625.
  • 17. Zhao, B., et al., Electrical transport properties of Ti-doped Fe 2 O 3 (0001) epitaxial films. Physical Review B—Condensed Matter and Materials Physics, 2011. 84(24): p. 245325.
  • 18. Yin, S., et al., Tailored fabrication of quasi-isoporous and double layered α-Fe2O3 thin films and their application in photovoltaic devices. Chemical Engineering Journal, 2023. 455: p. 140135.
  • 19. Khan, U., et al., Ferromagnetic properties of Al-doped Fe2O3 thin films by sol-gel. Materials Today: Proceedings, 2015. 2(10): p. 5415-5420.
  • 20. Sharma, B. and A. Sharma, Enhanced surface dynamics and magnetic switching of α-Fe2O3 films prepared by laser assisted chemical vapor deposition. Applied Surface Science, 2021. 567: p. 150724.
  • 21. Zhang, Y.-F., et al., Enhanced visible-light photoelectrochemical performance via chemical vapor deposition of Fe2O3 on a WO3 film to form a heterojunction. Rare Metals, 2020. 39(7): p. 841-849.
  • 22. Cao, J., et al., Photoanodic properties of pulsed-laser-deposited α-Fe2O3 electrode. Journal of Physics D: Applied Physics, 2010. 43(32): p. 325101.
  • 23. Grine, A., et al., Effect of precursor concentration and annealing temperature on the structural, optical and electrical properties of pure α-Fe2O3 thin films elaborated by the spin-coating method. Materials Chemistry and Physics, 2022. 276: p. 125367.
  • 24. Mainali, P., et al., Humidity induced resistive switching and negative differential resistance in α-Fe2O3 porous thin films. Sensors and Actuators A: Physical, 2023. 362: p. 114631.
  • 25. Rahman, G. and O.-S. Joo, Electrodeposited nanostructured α-Fe2O3 thin films for solar water splitting: Influence of Pt doping on photoelectrochemical performance. Materials Chemistry and Physics, 2013. 140(1): p. 316-322.
  • 26. Salari, M. A., Muğlu, G. M., Şenay, V., Sarıtaş, S., & Kundakçı, M. (2024). Analysis of optical, structural, and morphological properties of a Ti-doped α-Fe2O3 thin film produced through RF and DC magnetron Co-sputtering. Ceramics International, 50(20), 39221-39225.
  • 27. Sarıtaş, S., Muğlu, G. M., Turgut, E., Kundakçı, M., Yıldırım, M., & Şenay, V. (2024). Optical, structural, morphological, and gas sensing properties of Mg-doped α-Fe2O3 thin films deposited by RF and DC magnetron Co-sputtering technique. Physica B: Condensed Matter, 677, 415704.
  • 28. Tauc, J., R. Grigorovici, and A. Vancu, Optical properties and electronic structure of amorphous germanium. physica status solidi (b), 1966. 15(2): p. 627-637.
  • 29. Şenay, V., et al., ZnO thin film synthesis by reactive radio frequency magnetron sputtering. Applied Surface Science, 2014. 318: p. 2-5.
  • 30. S. Mokhtari, et al., Influence of pretreatment on the properties of α-Fe2O3 and the effect on photocatalytic degradation of methylene blue under visible light, Water Sci. Technol. 82 (11) (2020) 2415–2424. 31. P. More, et al., Spray synthesized hydrophobic α-Fe 2 O 3 thin film electrodes for supercapacitor application, J. Mater. Sci. Mater. Electron. 28 (2017) 17839–17848.
  • 32. M. Li, et al., Facile fabrication of three-dimensional fusiform-like α-Fe2O3 for enhanced photocatalytic performance, Nanomaterials 11 (10) (2021) 2650.
  • 33. Dayanand, et al., Deposition of single phase polycrystalline α-Fe2O3 thin film on silicon and silica substrates by spray pyrolysis, Silicon 13 (2021) 3361–3366.
  • 34. J. Tian, et al., Binding Fe 2 O 3 nanoparticles in polydopamine-reduced graphene as negative electrode materials for high-performance asymmetric supercapacitors, J. Nanoparticle Res. 21 (2019) 1–12.
  • 35. Quan, C. and Y. He, Properties of nanocrystalline Cr coatings prepared by cathode plasma electrolytic deposition from trivalent chromium electrolyte. Surface and Coatings Technology, 2015. 269: p. 319-323.
  • 36. Zhao, P., et al., Facile hydrothermal fabrication of nitrogen-doped graphene/Fe2O3 composites as high performance electrode materials for supercapacitor. Journal of alloys and compounds, 2014. 604: p. 87-93.
  • 37. Jiang, Z., et al., Natural carbon nanodots assisted development of size-tunable metal (Pd, Ag) nanoparticles grafted on bionic dendritic α-Fe2O3 for cooperative catalytic applications. Journal of materials chemistry A, 2015. 3(46): p. 23607-23620.

Some Physical Attributes of a Cr-Doped Iron Oxide Thin Film Produced by Simultaneous RF and DC Magnetron Sputtering Technique

Yıl 2025, Cilt: 18 Sayı: 1, 129 - 139, 28.03.2025
https://doi.org/10.18185/erzifbed.1523374

Öz

Iron oxide has recently attracted considerable interest because of its diverse structural and morphological configurations, leading to progressions in various technologies, including ultrahigh magnetic storage, magneto-optical sensors, humidity sensors, and gas sensors. In this research, a thin film of iron oxide doped with chromium was produced on a glass substrate using simultaneous RF and DC magnetron sputtering. The resulting thin film's optical, structural, elemental, and surface characteristics were thoroughly investigated using UV-VIS spectroscopy, XRD, XPS, AFM, and SEM. XRD was utilized to examine the structure of the thin film, which demonstrated good crystallinity. Notably, prominent diffraction peaks at various angles corresponded to specific planes of the normal hematite phase of Fe2O3, as verified by the JCPDS Card No. 33-0664. A significant peak at (104) indicated a sturdy development of the hematite phase. The XPS spectrum analysis approved the presence of iron, oxygen, and chromium in the thin film. This study, known for its straightforward methodology, provides valuable insights into the chromium impurity doping process of Fe2O3, contributing to a deeper understanding of its structural and morphological characteristics.

Etik Beyan

Dear Editor, I am sending you an article we have prepared to be published in the Erzincan University Institute of Science and Technology Journal. The article is titled “Some Physical Attributes of a Cr-Doped Iron Oxide Thin Film Produced by Simultaneous RF and DC Magnetron Sputtering Technique”. We confirm that this article has not been published elsewhere and is not under consideration by another journal. All authors read and approved the final version of the manuscript and agreed to submit it to your journal. Thank you very much for your evaluation. Kind regards.

Destekleyen Kurum

None

Proje Numarası

Yok

Teşekkür

None

Kaynakça

  • 1. Abdulnabi, G. and A.M. Juda, Characterization and synthesis of α-Fe2O3 nanoparticles and α-Fe2O3/CuO nanocomposite by hydrothermal method and application them in a solar cell. Journal of Survey in Fisheries Sciences, 2023. 10(3S): p. 4224-4234.
  • 2. Ateş, T., et al., Ni Katkısının Fe2O3’ün Yapısal Özellikleri Üzerine Etkilerinin Araştırılması. International Journal of Innovative Engineering Applications, 2021. 5(2): p. 81-87.
  • 3. Domacena, A.M.G., C.L.E. Aquino, and M.D.L. Balela, Photo-Fenton degradation of methyl orange using hematite (α-Fe2O3) of various morphologies. Materials Today: Proceedings, 2020. 22: p. 248-254.
  • 4. Haridas, V., et al., Ultrahigh specific capacitance of α-Fe2O3 nanorods-incorporated defect-free graphene nanolayers. Energy, 2021. 221: p. 119743.
  • 5. Mizuno, S. and H. Yao, On the electronic transitions of α-Fe2O3 hematite nanoparticles with different size and morphology: Analysis by simultaneous deconvolution of UV–vis absorption and MCD spectra. Journal of Magnetism and Magnetic Materials, 2021. 517: p. 167389.
  • 6. Xu, Y., et al., Synthesis and characterization of single-crystalline α-Fe2O3 nanoleaves. Physica E: Low-dimensional Systems and Nanostructures, 2009. 41(5): p. 806-811.
  • 7. Popov, N., et al., Influence of low-spin Co3+ for high-spin Fe3+ substitution on the structural, magnetic, optical and catalytic properties of hematite (α-Fe2O3) nanorods. Journal of physics and chemistry of solids, 2021. 152: p. 109929.
  • 8. Miller, E.L., et al., Development of reactively sputtered metal oxide films for hydrogen-producing hybrid multijunction photoelectrodes. Solar energy materials and solar cells, 2005. 88(2): p. 131-144.
  • 9. Emin, S., et al., Photoelectrochemical water splitting with porous α-Fe2O3 thin films prepared from Fe/Fe-oxide nanoparticles. Applied Catalysis A: General, 2016. 523: p. 130-138.
  • 10. Annamalai, A., et al., Bifunctional TiO2 underlayer for α-Fe 2 O 3 nanorod based photoelectrochemical cells: enhanced interface and Ti 4+ doping. Journal of Materials Chemistry A, 2015. 3(9): p. 5007-5013.
  • 11. Hu, Y.-S., et al., Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chemistry of Materials, 2008. 20(12): p. 3803-3805.
  • 12. Wang, L., C.-Y. Lee, and P. Schmuki, Ti and Sn co-doped anodic α-Fe2O3 films for efficient water splitting. Electrochemistry communications, 2013. 30: p. 21-25.
  • 13. Kumar Pathak, D., et al., Raman area-and thermal-mapping studies of faceted nano-crystalline α-Fe2O3 thin films deposited by spray pyrolysis. Canadian Journal of Chemistry, 2022. 100(7): p. 507-511.
  • 14. Abedi, S.P., M.B. Rahmani, and F. Rezaii, α-Fe2O3 thin films deposited by a facile spray pyrolysis technique for enhanced ethanol sensing. Physica Scripta, 2023. 98(5): p. 055901.
  • 15. Huang, M.-C., et al., Magnetron sputtering process of carbon-doped α-Fe2O3 thin films for photoelectrochemical water splitting. Journal of Alloys and Compounds, 2015. 636: p. 176-182. 16. Ma, Y., et al., The growth mode of α-Fe2O3 thin films by DC magnetron sputtering. Vacuum, 2021. 194: p. 110625.
  • 17. Zhao, B., et al., Electrical transport properties of Ti-doped Fe 2 O 3 (0001) epitaxial films. Physical Review B—Condensed Matter and Materials Physics, 2011. 84(24): p. 245325.
  • 18. Yin, S., et al., Tailored fabrication of quasi-isoporous and double layered α-Fe2O3 thin films and their application in photovoltaic devices. Chemical Engineering Journal, 2023. 455: p. 140135.
  • 19. Khan, U., et al., Ferromagnetic properties of Al-doped Fe2O3 thin films by sol-gel. Materials Today: Proceedings, 2015. 2(10): p. 5415-5420.
  • 20. Sharma, B. and A. Sharma, Enhanced surface dynamics and magnetic switching of α-Fe2O3 films prepared by laser assisted chemical vapor deposition. Applied Surface Science, 2021. 567: p. 150724.
  • 21. Zhang, Y.-F., et al., Enhanced visible-light photoelectrochemical performance via chemical vapor deposition of Fe2O3 on a WO3 film to form a heterojunction. Rare Metals, 2020. 39(7): p. 841-849.
  • 22. Cao, J., et al., Photoanodic properties of pulsed-laser-deposited α-Fe2O3 electrode. Journal of Physics D: Applied Physics, 2010. 43(32): p. 325101.
  • 23. Grine, A., et al., Effect of precursor concentration and annealing temperature on the structural, optical and electrical properties of pure α-Fe2O3 thin films elaborated by the spin-coating method. Materials Chemistry and Physics, 2022. 276: p. 125367.
  • 24. Mainali, P., et al., Humidity induced resistive switching and negative differential resistance in α-Fe2O3 porous thin films. Sensors and Actuators A: Physical, 2023. 362: p. 114631.
  • 25. Rahman, G. and O.-S. Joo, Electrodeposited nanostructured α-Fe2O3 thin films for solar water splitting: Influence of Pt doping on photoelectrochemical performance. Materials Chemistry and Physics, 2013. 140(1): p. 316-322.
  • 26. Salari, M. A., Muğlu, G. M., Şenay, V., Sarıtaş, S., & Kundakçı, M. (2024). Analysis of optical, structural, and morphological properties of a Ti-doped α-Fe2O3 thin film produced through RF and DC magnetron Co-sputtering. Ceramics International, 50(20), 39221-39225.
  • 27. Sarıtaş, S., Muğlu, G. M., Turgut, E., Kundakçı, M., Yıldırım, M., & Şenay, V. (2024). Optical, structural, morphological, and gas sensing properties of Mg-doped α-Fe2O3 thin films deposited by RF and DC magnetron Co-sputtering technique. Physica B: Condensed Matter, 677, 415704.
  • 28. Tauc, J., R. Grigorovici, and A. Vancu, Optical properties and electronic structure of amorphous germanium. physica status solidi (b), 1966. 15(2): p. 627-637.
  • 29. Şenay, V., et al., ZnO thin film synthesis by reactive radio frequency magnetron sputtering. Applied Surface Science, 2014. 318: p. 2-5.
  • 30. S. Mokhtari, et al., Influence of pretreatment on the properties of α-Fe2O3 and the effect on photocatalytic degradation of methylene blue under visible light, Water Sci. Technol. 82 (11) (2020) 2415–2424. 31. P. More, et al., Spray synthesized hydrophobic α-Fe 2 O 3 thin film electrodes for supercapacitor application, J. Mater. Sci. Mater. Electron. 28 (2017) 17839–17848.
  • 32. M. Li, et al., Facile fabrication of three-dimensional fusiform-like α-Fe2O3 for enhanced photocatalytic performance, Nanomaterials 11 (10) (2021) 2650.
  • 33. Dayanand, et al., Deposition of single phase polycrystalline α-Fe2O3 thin film on silicon and silica substrates by spray pyrolysis, Silicon 13 (2021) 3361–3366.
  • 34. J. Tian, et al., Binding Fe 2 O 3 nanoparticles in polydopamine-reduced graphene as negative electrode materials for high-performance asymmetric supercapacitors, J. Nanoparticle Res. 21 (2019) 1–12.
  • 35. Quan, C. and Y. He, Properties of nanocrystalline Cr coatings prepared by cathode plasma electrolytic deposition from trivalent chromium electrolyte. Surface and Coatings Technology, 2015. 269: p. 319-323.
  • 36. Zhao, P., et al., Facile hydrothermal fabrication of nitrogen-doped graphene/Fe2O3 composites as high performance electrode materials for supercapacitor. Journal of alloys and compounds, 2014. 604: p. 87-93.
  • 37. Jiang, Z., et al., Natural carbon nanodots assisted development of size-tunable metal (Pd, Ag) nanoparticles grafted on bionic dendritic α-Fe2O3 for cooperative catalytic applications. Journal of materials chemistry A, 2015. 3(46): p. 23607-23620.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Karekterizasyonu, Malzeme Üretim Teknolojileri, Malzeme Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Günay Merhan Muğlu 0000-0002-4664-1482

Maryam Abdolahpour Salari 0009-0002-1199-5632

Volkan Şenay 0000-0002-6579-2737

Sevda Sarıtaş 0000-0002-7274-3968

Proje Numarası Yok
Erken Görünüm Tarihi 26 Mart 2025
Yayımlanma Tarihi 28 Mart 2025
Gönderilme Tarihi 27 Temmuz 2024
Kabul Tarihi 6 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 1

Kaynak Göster

APA Merhan Muğlu, G., Abdolahpour Salari, M., Şenay, V., Sarıtaş, S. (2025). Some Physical Attributes of a Cr-Doped Iron Oxide Thin Film Produced by Simultaneous RF and DC Magnetron Sputtering Technique. Erzincan University Journal of Science and Technology, 18(1), 129-139. https://doi.org/10.18185/erzifbed.1523374