Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigating TIFY Genes for Salt Stress Adaptation in Quinoa (Chenopodium quinoa Willd.): A Genome-Wide Approach

Yıl 2025, Cilt: 18 Sayı: 1, 213 - 228, 28.03.2025
https://doi.org/10.18185/erzifbed.1581226

Öz

TIFY ailesi, TIFY, Jas ve GATA motiflerini içeren bitkilerin savunma mekanizmalarında ve stres faktörlerine karşı verdikleri yanıtta önemli rol oynayan bir gen ailesidir. TIFY gen ailesi birçok bitki türünde araştırılmış olmasına rağmen, kinoada henüz incelenmemiştir. Bu çalışmada, 16 Cq-TIFY geni tanımlanmış, bu genler Cq-TIFY-1’den Cq-TIFY-16’ya kadar numaralandırılarak yapısal ve işlevsel özellikleri karakterize edilmiştir. Tanımlanan Cq-TIFY proteinlerinin moleküler ağırlıkları 19,99 ile 48,59 kDa, amino asit sayıları 189 ile 450, teorik izoelektrik noktaları ise 4,84 ile 10,1 arasında değişmektedir. Filogenetik analiz sonuçlarına göre, TIFY genlerinin üç sınıfa ayrıldığı belirlenmiştir. Gen ailesinin farklı sınıflarındaki üyelerin gen yapılarının genellikle benzer olduğu belirlenmiştir. Kinoa’da yedi segmental duplikasyon geçirmiş gen tanımlanmış olup, Ka/Ks analizi bu genlerin evrimsel süreçte arındırıcı (negatif) seçilime maruz kaldığını göstermiştir. Chenopodium quinoa, Arabidopsis thaliana ve Spinacia oleracea türleri arasındaki TIFY genlerinin sinteni analizi, bu üç bitki arasında TIFY genleri açısından bir ilişki olduğunu ortaya koymuştur. Promotör analizi sonucunda, TIFY genlerinde strese duyarlı ve hormonla ilişkili cis-elementlerin varlığı ortaya çıkarılmıştır. Araştırmada, RNA-seq verileri, tuz stres koşulları altında kök ve sürgün dokularında Cq-TIFY genlerinin ifade modellerini incelemek için kullanılmıştır. Genlerin tuz stresi altındaki ifade profili köklerde ve sürgünlerde dokuya özgü olarak farklılık göstermiş ve ifadelerinde anlamlı bir artış belirlenmiştir. Bu sonuç, genlerin tuz toleransı mekanizmalarında rol oynayabileceğini düşündürmüştür. Bu çalışma, kinoadaki TIFY gen ailesine dair bilgimizi artırmakta ve klasik ıslah veya genetik mühendisliği yoluyla stres toleransını artırmaya yönelik bir temel oluşturmaktadır.

Etik Beyan

This study presents no ethical concerns related to its publication.

Kaynakça

  • [1] Inal, B., Muslu S., Yigider E., Kasapoglu A., Ilhan E., Ciltas A., Yildirim E., Aydin M. (2024) In silico analysis of Phaseolus vulgaris L. metalloprotease FtsH gene: characterization and expression in drought and salt stress. Genetic Resources and Crop Evolution, 2024, 1-24.
  • [2] Mishra, R., Shteinberg M., Shkolnik D., Anfoka G., Czosnek H., Gorovits R. (2022) Interplay between abiotic (drought) and biotic (virus) stresses in tomato plants. Molecular Plant Pathology, 23(4), 475-488.
  • [3] Sewelam, N., El-Shetehy M., Mauch F., Maurino V. G. (2021) Combined abiotic stresses repress defense and cell wall metabolic genes and render plants more susceptible to pathogen infection. Plants, 10(9), 1946.
  • [4] Mahmud, A. A., Upadhyay S. K., Srivastava A. K., Bhojiya A. A. (2021) Biofertilizers: A Nexus between soil fertility and crop productivity under abiotic stress. Current Research in Environmental Sustainability, 3, 100063.
  • [5] Mohanavelu, A., Naganna S. R., Al-Ansari N. (2021) Irrigation induced salinity and sodicity hazards on soil and groundwater: An overview of its causes, impacts and mitigation strategies. Agriculture, 11(10), 983.
  • [6] Arif, Y., Singh P., Siddiqui H., Bajguz A., Hayat S. (2020) Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77.
  • [7] Balasubramaniam, T., Shen G., Esmaeili N., Zhang H. (2023) Plants’ response mechanisms to salinity stress. Plants, 12(12), 2253.
  • [8] Buttanri, A., Kasapoğlu A. G., Öner B. M., Aygören A. S., Muslu S., İlhan E., Yildirim E., Aydin M. (2024) Predicting the role of β-GAL genes in bean under abiotic stress and genome-wide characterization of β-GAL gene family members. Protoplasma 1-19.
  • [9] Kasapoglu, A. G., Ilhan E., Aydin M., Yigider E., Inal B., Buyuk I., Taspinar M. S., Ciltas A., Agar G. (2023) Characterization of Two-Component System gene (TCS) in melatonin-treated common bean under salt and drought stress. Physiology and Molecular Biology of Plants, 29(11), 1733-1754.
  • [10] Kumari, V. V., Banerjee P., Verma V. C., Sukumaran S., Chandran M. A. S., Gopinath K. A., Venkatesh G., Yadav S. K., Singh V. K., Awasthi N. K. (2022) Plant nutrition: An effective way to alleviate abiotic stress in agricultural crops. International Journal of Molecular Sciences 23(15), 8519.
  • [11] Raza, A., Tabassum J., Fakhar A. Z., Sharif R., Chen H., Zhang C., Ju L., Fotopoulos V., Siddique K. H., Singh R. K. (2023) Smart reprograming of plants against salinity stress using modern biotechnological tools. Critical Reviews in Biotechnology, 43(7), 1035-1062.
  • [12] Shah, W. H., Rasool A., Saleem S., Mushtaq N. U., Tahir I., Hakeem K. R., Rehman R. U. (2021) Understanding the integrated pathways and mechanisms of transporters, protein kinases, and transcription factors in plants under salt stress. International Journal of Genomics, 2021(1), 5578727.
  • [13] Liu, H., Tang X., Zhang N., Li S., Si H. (2023) Role of bZIP transcription factors in plant salt stress. International Journal of Molecular Science, 24(9), 7893.
  • [14] Sheng, Y., Yu H., Pan H., Qiu K., Xie Q., Chen H., Fu S., Zhang J., Zhou H. (2022) Genome-wide analysis of the gene structure, expression and protein interactions of the peach (Prunus persica) TIFY gene family. Frontiers in Plant Science, 13, 792802.
  • [15] Tao, J., Jia H., Wu M., Zhong W., Jia D., Wang Z., Huang C. (2022) Genome-wide identification and characterization of the TIFY gene family in kiwifruit. BMC Genomics, 23(1), 179.
  • [16] Nishii, A., Takemura M., Fujita H., Shikata M., Yokota A., Kohchi T. (2000) Characterization of a novel gene encoding a putative single zinc-finger protein, ZIM, expressed during the reproductive phase in Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry 64(7), 1402-1409.
  • [17] Li, Y., Zhang Q., Wang L., Wang X., Qiao J., Wang H. (2023) New insights into the TIFY gene family of Brassica napus and its involvement in the regulation of shoot branching. International Journal of Molecular Sciences, 24(23), 17114.
  • [18] He, X., Kang Y., Li W., Liu W., Xie P., Liao L., Huang L., Yao M., Qian L., Liu Z. (2020) Genome-wide identification and functional analysis of the TIFY gene family in the response to multiple stresses in Brassica napus L. BMC Genomics, 21, 1-13.
  • [19] Liu, H., Lyu HM., Zhu K., Van de Peer Y., Cheng Z. M. (2021) The emergence and evolution of intron‐poor and intronless genes in intron‐rich plant gene families. The Plant Journal, 105(4), 1072-1082.
  • [20] Xu, L., Liu A., Wang T., Wang Y., Li L., Wu P. (2023) Characterization and coexpression analysis of the Tify family genes in euryale ferox related to leaf development. Plants, 12(12), 2323.
  • [21] Heidari, P., Faraji S., Ahmadizadeh M., Ahmar S., Mora-Poblete F. (2021) New insights into structure and function of TIFY genes in Zea mays and Solanum lycopersicum: A genome-wide comprehensive analysis. Frontiers in Genetics, 12, 657970.
  • [22] Zhang, X., Ran W., Zhang J., Ye M., Lin S., Li X., Sultana R., Sun X. (2020) Genome-wide identification of the Tify gene family and their expression profiles in response to biotic and abiotic stresses in tea plants (Camellia sinensis). International Journal of Molecular Sciences, 21(21), 8316.
  • [23] Sun, F., Chen Z., Zhang Q., Wan Y., Hu R., Shen S., Chen S., Yin N., Tang Y., Liang Y. (2022) Genome-wide identification of the TIFY gene family in Brassiceae and its potential association with heavy metal stress in rapeseed. Plants, 11(5), 667.
  • [24] Wang, H., Zhang Y., Zhang L., Li X., Yao X., Hao D., Guo H., Liu J., Li J. (2024) Genome-Wide Identification and Characterization of the TIFY Gene Family and Their Expression Patterns in Response to MeJA and Aluminum Stress in Centipedegrass (Eremochloa ophiuroides). Plants, 13(3), 462.
  • [25] Li, X., Wen K., Zhu L., Chen C., Yin T., Yang X., Zhao K., Zi Y., Zhang H., Luo X. (2024) Genome-wide identification and expression analysis of the Eriobotrya japonica TIFY gene family reveals its functional diversity under abiotic stress conditions. BMC Genomics, 25(1), 468.
  • [26] Yang, J., Duan G., Li C., Liu L., Han G., Zhang Y., Wang C. (2019) The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Frontiers in Plant Science,10, 1349.
  • [27] Chen, Q., Dai R., Shuang S., Zhang Y., Huo X., Shi F., Zhang Z. (2024) Genome-wide investigation of the TIFY transcription factors in alfalfa (Medicago sativa L.): identification, analysis, and expression. BMC Plant Biology, 24(1), 840.
  • [28] Wang, X., Li N., Zan T., Xu K., Gao S., Yin Y., Yao M., Wang F. (2023) Genome-wide analysis of the TIFY family and function of CaTIFY7 and CaTIFY10b under cold stress in pepper (Capsicum annuum L.). Frontiers in Plant Science, 14, 1308721.
  • [29] Zhang, H., Liu Z., Geng R., Ren M., Cheng L., Liu D., Jiang C., Wen L., Xiao Z., Yang A. (2024) Genome-wide identification of the TIFY gene family in tobacco and expression analysis in response to Ralstonia solanacearum infection. Genomics, 116(3), 110823.
  • [30] Singh, P., Mukhopadhyay K. (2021) Comprehensive molecular dissection of TIFY Transcription factors reveal their dynamic responses to biotic and abiotic stress in wheat (Triticum aestivum L.). Scientific Reports, 11(1), 9739.
  • [31] Zhao, Z., Meng G., Zamin I., Wei T., Ma D., An L., Yue X. (2023) Genome-wide identification and functional analysis of the TIFY family genes in response to abiotic stresses and hormone treatments in Tartary Buckwheat (Fagopyrum tataricum). International Journal of Molecular Sciences, 24(13), 10916.
  • [32] Liu, Y. L., Zheng L., Jin L. G., Liu Y. X., Kong Y. N., Wang, Y. X., Yu, T. F., Chen J., Zhou Y. B., Chen M. (2022) Genome-wide analysis of the soybean TIFY family and identification of GmTIFY10e and GmTIFY10g response to salt stress. Frontiers in Plant Science, 13, 845314.
  • [33] Ren, Y., Ma R., Fan Y., Zhao B., Cheng P., Fan Y., Wang B. (2022) Genome-wide identification and expression analysis of the SPL transcription factor family and its response to abiotic stress in Quinoa (Chenopodium quinoa). BMC Genomics, 23(1), 773.
  • [34] Shi, P., Jiang R., Li B., Wang D., Fang D., Yin M., Yin M., Gu M. (2022) Genome-wide analysis and expression profiles of the VOZ gene family in Quinoa (Chenopodium quinoa). Genes, 13(10), 1695.
  • [35] Li, F., Liu J., Guo X., Yin L., Zhang H., Wen R. (2020) Genome-wide survey, characterization, and expression analysis of bZIP transcription factors in Chenopodium quinoa. BMC Plant Biology, 20:1-11.
  • [36] Murphy, K. M., Matanguihan J. B., Fuentes F. F., Gómez‐Pando L.R., Jellen E. N., Maughan P. J., Jarvis D. E. (2018) Quinoa breeding and genomics. Plant Breeding Reviews, 42, 257-320.
  • [37] Juncheng, H., Cheng Y., Lingdi X., Zhaoyang H., Yong Z., Shiqiang L. (2022) Comprehensive identification and expression analysis of the TIFY gene family in cucumber. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(2), 12703-12703.
  • [38] Thompson, J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24), 4876-4882.
  • [39] Tamura, K., Stecher G., Kumar S. (2021) MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022-3027.
  • [40] Letunic, I., Bork P. (2024) Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Research, 2024:gkae268.
  • [41] Hu, B., Jin J., Guo A. Y., Zhang H., Luo J., Gao G. (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 31(8), 1296-1297.
  • [42] Chen, C., Wu Y., Li J., Wang X., Zeng Z., Xu J., Liu Y., Feng J., Chen H., He Y. (2023) TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant, 16(11), 1733-1742.
  • [43] Krzywinski, M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S. J., Marra M A. (2009) Circos: an information aesthetic for comparative genomics. Genome Research, 19(9), 1639-1645.
  • [44] Bailey, T. L., Williams N., Misleh C., Li W. W. (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research 2006, 34(suppl_2):W369-W373.
  • [45] Isıyel, M., İlhan E., Kasapoğlu A. G., Muslu S., Öner B. M., Aygören A. S., Yiğider E., Aydın M., Yıldırım E. (2024) Identification and characterization of Phaseolus vulgaris CHS genes in response to salt and drought stress. Genetic Resources and Crop Evolution, 2024:1-23.
  • [46] Aygören, A. S., Aydınyurt R., Uçar S., Kasapoğlu A. G., Yaprak E., Öner B. M., Muslu S., Isıyel M., İlhan E., Aydın M. (2022) Genome-wide analysis and characterization of the PIF gene family under salt and drought stress in common beans (Phaseolus vulgaris L.). Türkiye Tarımsal Araştırmalar Dergisi, 9(3), 274-285.
  • [47] Lescot, M., Déhais P., Thijs G., Marchal K., Moreau Y., Van de Peer Y., Rouzé P., Rombauts S. (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1), 325-327.
  • [48] Horton, P., Park K. J., Obayashi T., Fujita N., Harada H., Adams-Collier C., Nakai K. (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Research, 35(2), W585-W587.
  • [49] Szklarczyk, D., Gable A. L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N. T., Morris J. H., Bork P. (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607-D613.
  • [50] Kelley, L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J. (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845-858.
  • [51] Baek, J. H., Kim J., Kim C. K., Sohn S. H., Choi D., Ratnaparkhe M. B., Kim D. W., Lee T. (2016) MultiSyn: A webtool for multiple synteny detection and visualization of user's sequence of interest compared to public plant species. Evolutionary Bioinformatics, 12, EBO.S40009.
  • [52] Sen, S. (2022) Genome-wide TIFY family in Arachis hypogaea in the perspective of legume JAZs. Journal of Crop Science and Biotechnology, 25(4), 465-488.
  • [53] Xie, S. Y., Zhou C. Z., Zhu C., Zhan D. M., Chen L., Wu Z. C., Lai Z. X., Guo Y. Q. (2022) Genome-wide identification and expression analysis of CsTIFY transcription factor family under abiotic stress and hormone treatments in Camellia sinensis. 2022.
  • [54] Lian, C., Zhang B., Li J., Yang H., Liu X., Ma R., Zhang F., Liu J., Yang J., Lan J. (2024) Genome-wide identification, characterization and expression pattern analysis of TIFY family members in Artemisia argyi. BMC Genomics, 25(1), 925.
  • [55] Li, J., Xu X., Wang H., Zhang Y. (2024) New Insights into Structure and Function Predictions of TIFY Genes in Barley: A Genome-Wide Comprehensive Analysis. Agronomy, 14(8), 1663.
  • [56] Zhang, Z. B., Xiong T., Wang, X. J., Chen Y. R., Wang J. L., Guo C. L., Ye Z. Y. (2024) Lineage-specific gene duplication and expansion of DUF1216 gene family in Brassicaceae. Plos One, 19(4), e0302292.
  • [57] Li, G., Manzoor M. A., Chen R., Zhang Y., Song C. (2024) Genome-wide identification and expression analysis of TIFY genes under MeJA, cold and PEG-induced drought stress treatment in Dendrobium huoshanense. Physiology and Molecular Biology of Plants, 30(4), 527-542.
  • [58] Tong, S., Chen Y., Wei Y., Jiang S., Ye J., Xu F., Shao X. (2024) Genome-wide identification and response to exogenous hormones and pathogens of the TIFY gene family in Fragaria ananassa. Plant Growth Regulation, 2024, 1-16.
  • [59] Zheng, L., Wan Q., Wang H., Guo C., Niu X., Zhang X., Zhang R., Chen Y., Luo K. (2022) Genome-wide identification and expression of TIFY family in cassava (Manihot esculenta Crantz). Frontiers in Plant Science, 13, 1017840.
  • [60] Yang, X., Li J., Guo T., Guo B., Chen Z., An X. (2021) Comprehensive analysis of the R2R3-MYB transcription factor gene family in Populus trichocarpa. Industrial Crops and Products, 168, 113614.
  • [61] Zhao, G., Song Y., Wang C., Butt H. I., Wang Q., Zhang C., Yang Z., Liu Z., Chen E., Zhang X. (2016) Genome-wide identification and functional analysis of the TIFY gene family in response to drought in cotton. Molecular Genetics and Genomics, 291, 2173-2187.
  • [62] Ma, Y., Liu H., Wang J., Zhao G., Niu K., Zhou X., Zhang R., Yao R. (2024) Genomic identification and expression profiling of DMP genes in oat (Avena sativa) elucidate their responsiveness to seed aging. BMC Genomics, 25(1), 863.
  • [63] Ye, H., Du H., Tang N., Li X., Xiong L. (2009) Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Molecular Biology, 71, 291-305.
  • [64] Zhang, Z., Li X., Yu R., Han M., Wu Z. (2015) Isolation, structural analysis, and expression characteristics of the maize TIFY gene family. Molecular Genetics and Genomics, 290, 1849-1858.
  • [65] Wang, Y., Pan F., Chen D., Chu W., Liu H., Xiang Y. (2017) Genome-wide identification and analysis of the Populus trichocarpa TIFY gene family. Plant Physiology and Biochemistry, 115, 360-371.
  • [66] Lv, G., Han R., Shi J., Chen K., Liu G., Yu Q., Yang C., Jiang J. (2023) Genome-wide identification of the TIFY family reveals JAZ subfamily function in response to hormone treatment in Betula platyphylla. BMC Plant Biology, 23(1), 143.
  • [67] İlhan, E., Kasapoğlu A. G., Muslu S., Aygören A. S., Aydın M. (2023) Genome-wide analysis and characterization of Eucalyptus grandis TCP transcription factors. Journal of Agricultural Sciences, 29(2), 413-426.
  • [68] Huang, Z., Jin S. H., Guo H. D., Zhong X. J., He J., Li X., Jiang M. Y., Yu X. F., Long H., Ma M. D. (2016) Genome-wide identification and characterization of TIFY family genes in Moso Bamboo (Phyllostachys edulis) and expression profiling analysis under dehydration and cold stresses. PeerJ, 4, e2620.
  • [69] Kasapoğlu, A. G., Muslu S., Aygören A. S., Öner B. M., Güneş E., İlhan E., Yiğider E., Aydin M. (2024) Genome-wide characterization of the GPAT gene family in bean (Phaseolus vulgaris L.) and expression analysis under abiotic stress and melatonin. Genetic Resources and Crop Evolution, 1-21.
  • [70] Ebel, C., BenFeki A., Hanin M., Solano R., Chini A. (2018) Characterization of wheat (Triticum aestivum) TIFY family and role of Triticum Durum Td TIFY11a in salt stress tolerance. PloS One, 13(7), e0200566.
  • [71] Zhang, C., Yang R., Zhang T., Zheng D., Li X., Zhang Z. B., Li L. G., Wu Z. Y. (2023) ZmTIFY16, a novel maize TIFY transcription factor gene, promotes root growth and development and enhances drought and salt tolerance in Arabidopsis and Zea mays. Plant Growth Regulation, 100(1), 149-160.
  • [72] Saha, G., Park J. I., Kayum M. A., Nou I. S. (2016) A genome-wide analysis reveals stress and hormone responsive patterns of TIFY family genes in Brassica rapa. Frontiers in Plant Science, 7, 936.
  • [73] Chini, A., Ben-Romdhane W., Hassairi A., Aboul-Soud M. A. (2017) Identification of TIFY/JAZ family genes in Solanum lycopersicum and their regulation in response to abiotic stresses. PloS One, 12(6), e0177381.

Investigating TIFY Genes for Salt Stress Adaptation in Quinoa (Chenopodium quinoa Willd.): A Genome-Wide Approach

Yıl 2025, Cilt: 18 Sayı: 1, 213 - 228, 28.03.2025
https://doi.org/10.18185/erzifbed.1581226

Öz

Kaynakça

  • [1] Inal, B., Muslu S., Yigider E., Kasapoglu A., Ilhan E., Ciltas A., Yildirim E., Aydin M. (2024) In silico analysis of Phaseolus vulgaris L. metalloprotease FtsH gene: characterization and expression in drought and salt stress. Genetic Resources and Crop Evolution, 2024, 1-24.
  • [2] Mishra, R., Shteinberg M., Shkolnik D., Anfoka G., Czosnek H., Gorovits R. (2022) Interplay between abiotic (drought) and biotic (virus) stresses in tomato plants. Molecular Plant Pathology, 23(4), 475-488.
  • [3] Sewelam, N., El-Shetehy M., Mauch F., Maurino V. G. (2021) Combined abiotic stresses repress defense and cell wall metabolic genes and render plants more susceptible to pathogen infection. Plants, 10(9), 1946.
  • [4] Mahmud, A. A., Upadhyay S. K., Srivastava A. K., Bhojiya A. A. (2021) Biofertilizers: A Nexus between soil fertility and crop productivity under abiotic stress. Current Research in Environmental Sustainability, 3, 100063.
  • [5] Mohanavelu, A., Naganna S. R., Al-Ansari N. (2021) Irrigation induced salinity and sodicity hazards on soil and groundwater: An overview of its causes, impacts and mitigation strategies. Agriculture, 11(10), 983.
  • [6] Arif, Y., Singh P., Siddiqui H., Bajguz A., Hayat S. (2020) Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77.
  • [7] Balasubramaniam, T., Shen G., Esmaeili N., Zhang H. (2023) Plants’ response mechanisms to salinity stress. Plants, 12(12), 2253.
  • [8] Buttanri, A., Kasapoğlu A. G., Öner B. M., Aygören A. S., Muslu S., İlhan E., Yildirim E., Aydin M. (2024) Predicting the role of β-GAL genes in bean under abiotic stress and genome-wide characterization of β-GAL gene family members. Protoplasma 1-19.
  • [9] Kasapoglu, A. G., Ilhan E., Aydin M., Yigider E., Inal B., Buyuk I., Taspinar M. S., Ciltas A., Agar G. (2023) Characterization of Two-Component System gene (TCS) in melatonin-treated common bean under salt and drought stress. Physiology and Molecular Biology of Plants, 29(11), 1733-1754.
  • [10] Kumari, V. V., Banerjee P., Verma V. C., Sukumaran S., Chandran M. A. S., Gopinath K. A., Venkatesh G., Yadav S. K., Singh V. K., Awasthi N. K. (2022) Plant nutrition: An effective way to alleviate abiotic stress in agricultural crops. International Journal of Molecular Sciences 23(15), 8519.
  • [11] Raza, A., Tabassum J., Fakhar A. Z., Sharif R., Chen H., Zhang C., Ju L., Fotopoulos V., Siddique K. H., Singh R. K. (2023) Smart reprograming of plants against salinity stress using modern biotechnological tools. Critical Reviews in Biotechnology, 43(7), 1035-1062.
  • [12] Shah, W. H., Rasool A., Saleem S., Mushtaq N. U., Tahir I., Hakeem K. R., Rehman R. U. (2021) Understanding the integrated pathways and mechanisms of transporters, protein kinases, and transcription factors in plants under salt stress. International Journal of Genomics, 2021(1), 5578727.
  • [13] Liu, H., Tang X., Zhang N., Li S., Si H. (2023) Role of bZIP transcription factors in plant salt stress. International Journal of Molecular Science, 24(9), 7893.
  • [14] Sheng, Y., Yu H., Pan H., Qiu K., Xie Q., Chen H., Fu S., Zhang J., Zhou H. (2022) Genome-wide analysis of the gene structure, expression and protein interactions of the peach (Prunus persica) TIFY gene family. Frontiers in Plant Science, 13, 792802.
  • [15] Tao, J., Jia H., Wu M., Zhong W., Jia D., Wang Z., Huang C. (2022) Genome-wide identification and characterization of the TIFY gene family in kiwifruit. BMC Genomics, 23(1), 179.
  • [16] Nishii, A., Takemura M., Fujita H., Shikata M., Yokota A., Kohchi T. (2000) Characterization of a novel gene encoding a putative single zinc-finger protein, ZIM, expressed during the reproductive phase in Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry 64(7), 1402-1409.
  • [17] Li, Y., Zhang Q., Wang L., Wang X., Qiao J., Wang H. (2023) New insights into the TIFY gene family of Brassica napus and its involvement in the regulation of shoot branching. International Journal of Molecular Sciences, 24(23), 17114.
  • [18] He, X., Kang Y., Li W., Liu W., Xie P., Liao L., Huang L., Yao M., Qian L., Liu Z. (2020) Genome-wide identification and functional analysis of the TIFY gene family in the response to multiple stresses in Brassica napus L. BMC Genomics, 21, 1-13.
  • [19] Liu, H., Lyu HM., Zhu K., Van de Peer Y., Cheng Z. M. (2021) The emergence and evolution of intron‐poor and intronless genes in intron‐rich plant gene families. The Plant Journal, 105(4), 1072-1082.
  • [20] Xu, L., Liu A., Wang T., Wang Y., Li L., Wu P. (2023) Characterization and coexpression analysis of the Tify family genes in euryale ferox related to leaf development. Plants, 12(12), 2323.
  • [21] Heidari, P., Faraji S., Ahmadizadeh M., Ahmar S., Mora-Poblete F. (2021) New insights into structure and function of TIFY genes in Zea mays and Solanum lycopersicum: A genome-wide comprehensive analysis. Frontiers in Genetics, 12, 657970.
  • [22] Zhang, X., Ran W., Zhang J., Ye M., Lin S., Li X., Sultana R., Sun X. (2020) Genome-wide identification of the Tify gene family and their expression profiles in response to biotic and abiotic stresses in tea plants (Camellia sinensis). International Journal of Molecular Sciences, 21(21), 8316.
  • [23] Sun, F., Chen Z., Zhang Q., Wan Y., Hu R., Shen S., Chen S., Yin N., Tang Y., Liang Y. (2022) Genome-wide identification of the TIFY gene family in Brassiceae and its potential association with heavy metal stress in rapeseed. Plants, 11(5), 667.
  • [24] Wang, H., Zhang Y., Zhang L., Li X., Yao X., Hao D., Guo H., Liu J., Li J. (2024) Genome-Wide Identification and Characterization of the TIFY Gene Family and Their Expression Patterns in Response to MeJA and Aluminum Stress in Centipedegrass (Eremochloa ophiuroides). Plants, 13(3), 462.
  • [25] Li, X., Wen K., Zhu L., Chen C., Yin T., Yang X., Zhao K., Zi Y., Zhang H., Luo X. (2024) Genome-wide identification and expression analysis of the Eriobotrya japonica TIFY gene family reveals its functional diversity under abiotic stress conditions. BMC Genomics, 25(1), 468.
  • [26] Yang, J., Duan G., Li C., Liu L., Han G., Zhang Y., Wang C. (2019) The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Frontiers in Plant Science,10, 1349.
  • [27] Chen, Q., Dai R., Shuang S., Zhang Y., Huo X., Shi F., Zhang Z. (2024) Genome-wide investigation of the TIFY transcription factors in alfalfa (Medicago sativa L.): identification, analysis, and expression. BMC Plant Biology, 24(1), 840.
  • [28] Wang, X., Li N., Zan T., Xu K., Gao S., Yin Y., Yao M., Wang F. (2023) Genome-wide analysis of the TIFY family and function of CaTIFY7 and CaTIFY10b under cold stress in pepper (Capsicum annuum L.). Frontiers in Plant Science, 14, 1308721.
  • [29] Zhang, H., Liu Z., Geng R., Ren M., Cheng L., Liu D., Jiang C., Wen L., Xiao Z., Yang A. (2024) Genome-wide identification of the TIFY gene family in tobacco and expression analysis in response to Ralstonia solanacearum infection. Genomics, 116(3), 110823.
  • [30] Singh, P., Mukhopadhyay K. (2021) Comprehensive molecular dissection of TIFY Transcription factors reveal their dynamic responses to biotic and abiotic stress in wheat (Triticum aestivum L.). Scientific Reports, 11(1), 9739.
  • [31] Zhao, Z., Meng G., Zamin I., Wei T., Ma D., An L., Yue X. (2023) Genome-wide identification and functional analysis of the TIFY family genes in response to abiotic stresses and hormone treatments in Tartary Buckwheat (Fagopyrum tataricum). International Journal of Molecular Sciences, 24(13), 10916.
  • [32] Liu, Y. L., Zheng L., Jin L. G., Liu Y. X., Kong Y. N., Wang, Y. X., Yu, T. F., Chen J., Zhou Y. B., Chen M. (2022) Genome-wide analysis of the soybean TIFY family and identification of GmTIFY10e and GmTIFY10g response to salt stress. Frontiers in Plant Science, 13, 845314.
  • [33] Ren, Y., Ma R., Fan Y., Zhao B., Cheng P., Fan Y., Wang B. (2022) Genome-wide identification and expression analysis of the SPL transcription factor family and its response to abiotic stress in Quinoa (Chenopodium quinoa). BMC Genomics, 23(1), 773.
  • [34] Shi, P., Jiang R., Li B., Wang D., Fang D., Yin M., Yin M., Gu M. (2022) Genome-wide analysis and expression profiles of the VOZ gene family in Quinoa (Chenopodium quinoa). Genes, 13(10), 1695.
  • [35] Li, F., Liu J., Guo X., Yin L., Zhang H., Wen R. (2020) Genome-wide survey, characterization, and expression analysis of bZIP transcription factors in Chenopodium quinoa. BMC Plant Biology, 20:1-11.
  • [36] Murphy, K. M., Matanguihan J. B., Fuentes F. F., Gómez‐Pando L.R., Jellen E. N., Maughan P. J., Jarvis D. E. (2018) Quinoa breeding and genomics. Plant Breeding Reviews, 42, 257-320.
  • [37] Juncheng, H., Cheng Y., Lingdi X., Zhaoyang H., Yong Z., Shiqiang L. (2022) Comprehensive identification and expression analysis of the TIFY gene family in cucumber. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(2), 12703-12703.
  • [38] Thompson, J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24), 4876-4882.
  • [39] Tamura, K., Stecher G., Kumar S. (2021) MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022-3027.
  • [40] Letunic, I., Bork P. (2024) Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Research, 2024:gkae268.
  • [41] Hu, B., Jin J., Guo A. Y., Zhang H., Luo J., Gao G. (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 31(8), 1296-1297.
  • [42] Chen, C., Wu Y., Li J., Wang X., Zeng Z., Xu J., Liu Y., Feng J., Chen H., He Y. (2023) TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant, 16(11), 1733-1742.
  • [43] Krzywinski, M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S. J., Marra M A. (2009) Circos: an information aesthetic for comparative genomics. Genome Research, 19(9), 1639-1645.
  • [44] Bailey, T. L., Williams N., Misleh C., Li W. W. (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research 2006, 34(suppl_2):W369-W373.
  • [45] Isıyel, M., İlhan E., Kasapoğlu A. G., Muslu S., Öner B. M., Aygören A. S., Yiğider E., Aydın M., Yıldırım E. (2024) Identification and characterization of Phaseolus vulgaris CHS genes in response to salt and drought stress. Genetic Resources and Crop Evolution, 2024:1-23.
  • [46] Aygören, A. S., Aydınyurt R., Uçar S., Kasapoğlu A. G., Yaprak E., Öner B. M., Muslu S., Isıyel M., İlhan E., Aydın M. (2022) Genome-wide analysis and characterization of the PIF gene family under salt and drought stress in common beans (Phaseolus vulgaris L.). Türkiye Tarımsal Araştırmalar Dergisi, 9(3), 274-285.
  • [47] Lescot, M., Déhais P., Thijs G., Marchal K., Moreau Y., Van de Peer Y., Rouzé P., Rombauts S. (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1), 325-327.
  • [48] Horton, P., Park K. J., Obayashi T., Fujita N., Harada H., Adams-Collier C., Nakai K. (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Research, 35(2), W585-W587.
  • [49] Szklarczyk, D., Gable A. L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N. T., Morris J. H., Bork P. (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607-D613.
  • [50] Kelley, L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J. (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845-858.
  • [51] Baek, J. H., Kim J., Kim C. K., Sohn S. H., Choi D., Ratnaparkhe M. B., Kim D. W., Lee T. (2016) MultiSyn: A webtool for multiple synteny detection and visualization of user's sequence of interest compared to public plant species. Evolutionary Bioinformatics, 12, EBO.S40009.
  • [52] Sen, S. (2022) Genome-wide TIFY family in Arachis hypogaea in the perspective of legume JAZs. Journal of Crop Science and Biotechnology, 25(4), 465-488.
  • [53] Xie, S. Y., Zhou C. Z., Zhu C., Zhan D. M., Chen L., Wu Z. C., Lai Z. X., Guo Y. Q. (2022) Genome-wide identification and expression analysis of CsTIFY transcription factor family under abiotic stress and hormone treatments in Camellia sinensis. 2022.
  • [54] Lian, C., Zhang B., Li J., Yang H., Liu X., Ma R., Zhang F., Liu J., Yang J., Lan J. (2024) Genome-wide identification, characterization and expression pattern analysis of TIFY family members in Artemisia argyi. BMC Genomics, 25(1), 925.
  • [55] Li, J., Xu X., Wang H., Zhang Y. (2024) New Insights into Structure and Function Predictions of TIFY Genes in Barley: A Genome-Wide Comprehensive Analysis. Agronomy, 14(8), 1663.
  • [56] Zhang, Z. B., Xiong T., Wang, X. J., Chen Y. R., Wang J. L., Guo C. L., Ye Z. Y. (2024) Lineage-specific gene duplication and expansion of DUF1216 gene family in Brassicaceae. Plos One, 19(4), e0302292.
  • [57] Li, G., Manzoor M. A., Chen R., Zhang Y., Song C. (2024) Genome-wide identification and expression analysis of TIFY genes under MeJA, cold and PEG-induced drought stress treatment in Dendrobium huoshanense. Physiology and Molecular Biology of Plants, 30(4), 527-542.
  • [58] Tong, S., Chen Y., Wei Y., Jiang S., Ye J., Xu F., Shao X. (2024) Genome-wide identification and response to exogenous hormones and pathogens of the TIFY gene family in Fragaria ananassa. Plant Growth Regulation, 2024, 1-16.
  • [59] Zheng, L., Wan Q., Wang H., Guo C., Niu X., Zhang X., Zhang R., Chen Y., Luo K. (2022) Genome-wide identification and expression of TIFY family in cassava (Manihot esculenta Crantz). Frontiers in Plant Science, 13, 1017840.
  • [60] Yang, X., Li J., Guo T., Guo B., Chen Z., An X. (2021) Comprehensive analysis of the R2R3-MYB transcription factor gene family in Populus trichocarpa. Industrial Crops and Products, 168, 113614.
  • [61] Zhao, G., Song Y., Wang C., Butt H. I., Wang Q., Zhang C., Yang Z., Liu Z., Chen E., Zhang X. (2016) Genome-wide identification and functional analysis of the TIFY gene family in response to drought in cotton. Molecular Genetics and Genomics, 291, 2173-2187.
  • [62] Ma, Y., Liu H., Wang J., Zhao G., Niu K., Zhou X., Zhang R., Yao R. (2024) Genomic identification and expression profiling of DMP genes in oat (Avena sativa) elucidate their responsiveness to seed aging. BMC Genomics, 25(1), 863.
  • [63] Ye, H., Du H., Tang N., Li X., Xiong L. (2009) Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Molecular Biology, 71, 291-305.
  • [64] Zhang, Z., Li X., Yu R., Han M., Wu Z. (2015) Isolation, structural analysis, and expression characteristics of the maize TIFY gene family. Molecular Genetics and Genomics, 290, 1849-1858.
  • [65] Wang, Y., Pan F., Chen D., Chu W., Liu H., Xiang Y. (2017) Genome-wide identification and analysis of the Populus trichocarpa TIFY gene family. Plant Physiology and Biochemistry, 115, 360-371.
  • [66] Lv, G., Han R., Shi J., Chen K., Liu G., Yu Q., Yang C., Jiang J. (2023) Genome-wide identification of the TIFY family reveals JAZ subfamily function in response to hormone treatment in Betula platyphylla. BMC Plant Biology, 23(1), 143.
  • [67] İlhan, E., Kasapoğlu A. G., Muslu S., Aygören A. S., Aydın M. (2023) Genome-wide analysis and characterization of Eucalyptus grandis TCP transcription factors. Journal of Agricultural Sciences, 29(2), 413-426.
  • [68] Huang, Z., Jin S. H., Guo H. D., Zhong X. J., He J., Li X., Jiang M. Y., Yu X. F., Long H., Ma M. D. (2016) Genome-wide identification and characterization of TIFY family genes in Moso Bamboo (Phyllostachys edulis) and expression profiling analysis under dehydration and cold stresses. PeerJ, 4, e2620.
  • [69] Kasapoğlu, A. G., Muslu S., Aygören A. S., Öner B. M., Güneş E., İlhan E., Yiğider E., Aydin M. (2024) Genome-wide characterization of the GPAT gene family in bean (Phaseolus vulgaris L.) and expression analysis under abiotic stress and melatonin. Genetic Resources and Crop Evolution, 1-21.
  • [70] Ebel, C., BenFeki A., Hanin M., Solano R., Chini A. (2018) Characterization of wheat (Triticum aestivum) TIFY family and role of Triticum Durum Td TIFY11a in salt stress tolerance. PloS One, 13(7), e0200566.
  • [71] Zhang, C., Yang R., Zhang T., Zheng D., Li X., Zhang Z. B., Li L. G., Wu Z. Y. (2023) ZmTIFY16, a novel maize TIFY transcription factor gene, promotes root growth and development and enhances drought and salt tolerance in Arabidopsis and Zea mays. Plant Growth Regulation, 100(1), 149-160.
  • [72] Saha, G., Park J. I., Kayum M. A., Nou I. S. (2016) A genome-wide analysis reveals stress and hormone responsive patterns of TIFY family genes in Brassica rapa. Frontiers in Plant Science, 7, 936.
  • [73] Chini, A., Ben-Romdhane W., Hassairi A., Aboul-Soud M. A. (2017) Identification of TIFY/JAZ family genes in Solanum lycopersicum and their regulation in response to abiotic stresses. PloS One, 12(6), e0177381.
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Biyoteknolojisi, Bitki Hücresi ve Moleküler Biyoloji
Bölüm Makaleler
Yazarlar

Esma Yigider 0000-0002-6896-0193

Erken Görünüm Tarihi 26 Mart 2025
Yayımlanma Tarihi 28 Mart 2025
Gönderilme Tarihi 7 Kasım 2024
Kabul Tarihi 17 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 1

Kaynak Göster

APA Yigider, E. (2025). Investigating TIFY Genes for Salt Stress Adaptation in Quinoa (Chenopodium quinoa Willd.): A Genome-Wide Approach. Erzincan University Journal of Science and Technology, 18(1), 213-228. https://doi.org/10.18185/erzifbed.1581226