Araştırma Makalesi
BibTex RIS Kaynak Göster

Bi1.75Pb0.25Sr2Ca2Cu3-xSnxO10+δ Cam Seramik Sisteminin Frekans Bağımlı Dielektrik Karakterizasyonu

Yıl 2025, Cilt: 18 Sayı: 1, 248 - 263, 28.03.2025
https://doi.org/10.18185/erzifbed.1603785

Öz

Bu çalışmada, Bi1.75Pb0.25Sr2Ca2Cu3-xSnxO10+δ cam seramik yapısı; (x=0.0, 0.3, 0.5) Cu3-x-Snx yer değiştirmesine bağlı olarak, frekans bağımlı (100 Hz-2 MHz) kapasite ve iletkenlik ölçümleri 75 K ve 125 K sıcaklık değerlerinde alınmıştır. Dielektrik sabitin reel kısmı (ε'), sanal dielektrik sabit (ε''), dielektrik kayıp (tanδ) ve alternatif akım elektriksel iletkenlik (σac) frekans bağımlılığı, kapasite-gerilim (C-V) ve iletkenlik-gerilim (G-V) ölçümleri kullanılarak analiz edilmiştir. Sn katkısı, negatif kapasite etkisi yaratmış ve Sn katkı oranının artışıyla kapasite etkisinde bir azalma gözlemlenmiştir. Gözlemlenen negatif kapasite etkisinin, Sn katkısı tarafından oluşturulan polarizasyon etkisinden kaynaklandığı düşünülmektedir. Negatif dielektrik sabiti ve sanal negatif dielektrik sabiti, negatif kapasite değerlerinden hesaplanmıştır. Katkılanmamış örnekler pozitif kapasite özelliği gösterirken, Sn eklenen örneklerde negatif kapasite özelliği gözlemlenmiştir. Aynı zamanda, örneklerin dielektrik özelliklerinin frekans ve sıcaklıkla bağımlı olduğu bulunmuştur.

Kaynakça

  • [1] Ritzberger, C., Apel, E., Höland, W., Peschke, A., Rheinberger, V. (2010). Properties and Clinical Application of Three Types of Dental Glass-Ceramics and Ceramics for CAD-CAM Technologies. Materials, 3(6), 3700–3713. doi:10.3390/ma3063700.
  • [2] Yokoi, T., Miyazaki, T., Kawashita, M., Ohtsuki, C. (2017). Bioactive Glass-Ceramics. Nanobioceramics For Healthcare Applications, 213-237. doi:10.1142/9781786341341_0008.
  • [3] Höland, W., Rheinberger, V., Apel, E., van’t Hoen, C., Höland, M., Dommann, A., Graf-Hausner, U. (2006). Clinical applications of glass-ceramics in dentistry. Journal of Materials Science: Materials in Medicine, 17(11), 1037–1042. doi:10.1007/s10856-006-0441-y.
  • [4] Javed, H., Sabato, A., Dlouhy, I., Halasova, M., Bernardo, E., Salvo, M., Smeacetto, F. (2019). Shear Performance at Room and High Temperatures of Glass–Ceramic Sealants for Solid Oxide Electrolysis Cell Technology. Materials, 12(2), 298. doi:10.3390/ma12020298.
  • [5] Gallo, L. S., Villas Boas, M. O. C., Rodrigues, A. C. M., Melo, F. C. L., Zanotto, E. D. (2019). Transparent glass–ceramics for ballistic protection: materials and challenges. Journal of Materials Research and Technology. doi:10.1016/j.jmrt.2019.05.006.
  • [6] Singarapu, B., Galusek, D., Durán, A., Pascual, M. J. (2020). Glass-Ceramics Processed by Spark Plasma Sintering (SPS) for Optical Applications. Applied Sciences, 10(8), 2791. doi:10.3390/app10082791.
  • [7] Tarascon M. J., Le Page, Y., Crystal substructure and physical properties of the superconducting phase Bi4(Sr,Ca)6Cu4O16+x Phys. Rev. B, 37, 9382-9389 (1988). doi: 10.1103/PhysRevB.37.9382.
  • [8] Upadhyay, P. L., Rao, S. U. M., Nagpal, K. C., Sharma, R. G. (1992). Microstructures and the role of Pb in doped Bisrcacuo superconductor. Materials Research Bulletin, 27(1), 109–116. https://doi.org/10.1016/0025-5408(92)90048-5.
  • [9] Moon, B. M., Kordas, G., van Harlingen, D. J., Jeng, Y. L., Johnson, D. L., Sharpe, P. R., Goretta, K. (1991). Sinter-forge process for Pb,Sb-doped 110 K BiSrCaCuO superconducting phase. Materials Letters, 10(11-12), 481–484. https://doi.org/10.1016/0167-577X(91)90211-N.
  • [10] Schwartz, J., Wu, S. (1991). Effects of lithium doping on the formation and microstructure of bulk BiSrCaCuO. Physica C: Superconductivity, 190(1-2), 169–171. https://doi.org/10.1016/S0921-4534(05)80240-0.
  • [11] Li, Y., Yang, B., Liu, X., Li, Y. (1994). Effect of V, Nb, and Ta Doping on the 2223 Phase Formation and the Crystal Structure in the BiSrCaCuO System. Journal of Solid State Chemistry, 113(1), 176–181. doi: 10.1006/jssc.1994.1357.
  • [12] Gridin, V. V., Ummat, P. K., Datars, W. R. (1992). Paraconductivity of Ga-doped BiPbSrCaCuO. Journal of Physics: Condensed Matter, 4(3), 823–828. doi: 10.1088/0953-8984/4/3/021.
  • [13] Sandoval, F., Lopez, C., Munoz, E. (1982). Forward-bias impedance of GaAs1-xPx LED's. Solid-State Electronics, 25, 355-357. doi: 10.1016/0038-1101(82)90119-8.
  • [14] Wu, X., Yang, E. S., Evans, H. L. (1990). Negative capacitance at metal‐semiconductor interfaces. Journal of Applied Physics, 68(6), 2845–2848. doi:10.1063/1.346442.
  • [15] Champness, C. H., Clark, W. R. (1990). Anomalous inductive effect in selenium Schottky diodes. Applied Physics Letters, 56(12), 1104–1106. doi:10.1063/1.102581.
  • [16] Wang, C. C., Liu, G. Z., He, M., Lu, H. B. (2008). Low-frequency negative capacitance in La0.8Sr0.2MnO3∕Nb-doped SrTiO3 heterojunction. Applied Physics Letters, 92(5), 052905. doi:10.1063/1.2840195.
  • [17] Perera, A. G. U., Shen, W. Z., Ershov, M., Liu, H. C., Buchanan, M., Schaff, W. J. (1999). Negative capacitance of GaAs homojunction far-infrared detectors. Applied Physics Letters, 74(21), 3167–3169. doi:10.1063/1.124169.
  • [18] Feng, L. F., Li, D., Zhu, C. Y., Wang, C. D., Cong, H. X., Xie, X. S., Lu, C. Z. (2007). Simultaneous sudden changes of electrical behavior at the threshold in laser diodes. Journal of Applied Physics, 102(6), 063102. doi:10.1063/1.2779278.
  • [19] Zhu, C. Y., Feng, L. F., Wang, C. D., Cong, H. X., Zhang, G. Y., Yang, Z. J., Chen, Z. Z. (2009). Negative capacitance in light-emitting devices. Solid-State Electronics, 53(3), 324–328. doi:10.1016/j.sse.2009.01.002.
  • [20] Zaidi, S. H., & Jonscher, A. K. (1987). Spectroscopy of delayed electronic transitions in GaAs Schottky diodes. Semiconductor Science and Technology, 2(9), 587–596. doi:10.1088/0268-1242/2/9/005.
  • [21] Ehrenfreund, E., Lungenschmied, C., Dennler, G., Neugebauer, H., & Sariciftci, N. S. (2007). Negative capacitance in organic semiconductor devices: Bipolar injection and charge recombination mechanism. Applied Physics Letters, 91(1), 012112. doi:10.1063/1.2752024.
  • [22] Ş. Çavdar, H. Koralay, Ş. Altındal. Effect of Vanadium Substitution on the Dielectric Properties of Glass Ceramic Bi-2212 Superconductor. J Low Temp Phys (2011) 164:102–114 DOI 10.1007/s10909-011-0361-1.
  • [23] Padma, R., Lakshmi, B. P., Reddy, V. R. (2013). Capacitance–frequency (C–f) and conductance–frequency (G–f) characteristics of Ir/n-InGaN Schottky diode as a function of temperature. Superlattices and Microstructures, 60, 358–369. doi:10.1016/j.spmi.2013.05.014.
  • [24] Çavdar, Ş., Koralay, H., Tuğluoğlu, N., Günen, A. (2005). Frequency-dependent dielectric characteristics of Tl–Ba–Ca–Cu–O bulk superconductor. Superconductor Science and Technology, 18(9), 1204–1209. doi:10.1088/0953-2048/18/9/010.
  • [25] Lal, B., Bamzai, K. K., Kotru, P. N., & Wanklyn, B. M. (2004). Microhardness, fracture mechanism and dielectric behaviour of flux-grown GdFeO3 single crystals. Materials Chemistry and Physics, 85(2-3), 353–365. doi:10.1016/j.matchemphys.2004.01.
  • [26] Reddy A V R, Mohan R G, Ravinder P and Boyanov B S (1999). High-frequency dielectric behaviour of polycrystalline zinc substituted cobalt ferrites. Journal of Materials Science, 34, 3169–3176.

Frequency-Dependent Dielectric Characterization of Bi1.75Pb0.25Sr2Ca2Cu3-xSnxO10+δ Glass Ceramics System

Yıl 2025, Cilt: 18 Sayı: 1, 248 - 263, 28.03.2025
https://doi.org/10.18185/erzifbed.1603785

Öz

In this study, Bi1.75Pb0.25Sr2Ca2Cu3-xSnxO10+δ glass ceramic structure; (x = 0.0, 0.3, 0.5) depending on Cu3-x-Snx displacement, frequency-dependent (100 Hz-2 MHz), capacitance-conductance measurements were taken at 75 K and 125 K temperature values. Dielectric constant reel part (ε'), imaginary dielectric constant (ε''), dielectric loss (tanδ) and ac electrical conductivity (σac) frequency dependence were analyzed using the capacitance–voltage (C–V) and conductance-voltage (G-V) measurements. Sn doping had a negative capacitive effect and a decrease in capacitive effect was observed with the addition of Sn doping rate. The observed negative capacitance effect is believed to arise from the polarization effect generated by the Sn dopant. The negative dielectric constant and the virtual negative dielectric constant were calculated from the negative capacitance values. While the undoped sample exhibits a positive capacitance characteristic, the addition of Sn dopant to the samples results in the observation of a negative capacitance property. At the same time, it was found that the dielectric properties of the samples were dependent on frequency and temperature.

Kaynakça

  • [1] Ritzberger, C., Apel, E., Höland, W., Peschke, A., Rheinberger, V. (2010). Properties and Clinical Application of Three Types of Dental Glass-Ceramics and Ceramics for CAD-CAM Technologies. Materials, 3(6), 3700–3713. doi:10.3390/ma3063700.
  • [2] Yokoi, T., Miyazaki, T., Kawashita, M., Ohtsuki, C. (2017). Bioactive Glass-Ceramics. Nanobioceramics For Healthcare Applications, 213-237. doi:10.1142/9781786341341_0008.
  • [3] Höland, W., Rheinberger, V., Apel, E., van’t Hoen, C., Höland, M., Dommann, A., Graf-Hausner, U. (2006). Clinical applications of glass-ceramics in dentistry. Journal of Materials Science: Materials in Medicine, 17(11), 1037–1042. doi:10.1007/s10856-006-0441-y.
  • [4] Javed, H., Sabato, A., Dlouhy, I., Halasova, M., Bernardo, E., Salvo, M., Smeacetto, F. (2019). Shear Performance at Room and High Temperatures of Glass–Ceramic Sealants for Solid Oxide Electrolysis Cell Technology. Materials, 12(2), 298. doi:10.3390/ma12020298.
  • [5] Gallo, L. S., Villas Boas, M. O. C., Rodrigues, A. C. M., Melo, F. C. L., Zanotto, E. D. (2019). Transparent glass–ceramics for ballistic protection: materials and challenges. Journal of Materials Research and Technology. doi:10.1016/j.jmrt.2019.05.006.
  • [6] Singarapu, B., Galusek, D., Durán, A., Pascual, M. J. (2020). Glass-Ceramics Processed by Spark Plasma Sintering (SPS) for Optical Applications. Applied Sciences, 10(8), 2791. doi:10.3390/app10082791.
  • [7] Tarascon M. J., Le Page, Y., Crystal substructure and physical properties of the superconducting phase Bi4(Sr,Ca)6Cu4O16+x Phys. Rev. B, 37, 9382-9389 (1988). doi: 10.1103/PhysRevB.37.9382.
  • [8] Upadhyay, P. L., Rao, S. U. M., Nagpal, K. C., Sharma, R. G. (1992). Microstructures and the role of Pb in doped Bisrcacuo superconductor. Materials Research Bulletin, 27(1), 109–116. https://doi.org/10.1016/0025-5408(92)90048-5.
  • [9] Moon, B. M., Kordas, G., van Harlingen, D. J., Jeng, Y. L., Johnson, D. L., Sharpe, P. R., Goretta, K. (1991). Sinter-forge process for Pb,Sb-doped 110 K BiSrCaCuO superconducting phase. Materials Letters, 10(11-12), 481–484. https://doi.org/10.1016/0167-577X(91)90211-N.
  • [10] Schwartz, J., Wu, S. (1991). Effects of lithium doping on the formation and microstructure of bulk BiSrCaCuO. Physica C: Superconductivity, 190(1-2), 169–171. https://doi.org/10.1016/S0921-4534(05)80240-0.
  • [11] Li, Y., Yang, B., Liu, X., Li, Y. (1994). Effect of V, Nb, and Ta Doping on the 2223 Phase Formation and the Crystal Structure in the BiSrCaCuO System. Journal of Solid State Chemistry, 113(1), 176–181. doi: 10.1006/jssc.1994.1357.
  • [12] Gridin, V. V., Ummat, P. K., Datars, W. R. (1992). Paraconductivity of Ga-doped BiPbSrCaCuO. Journal of Physics: Condensed Matter, 4(3), 823–828. doi: 10.1088/0953-8984/4/3/021.
  • [13] Sandoval, F., Lopez, C., Munoz, E. (1982). Forward-bias impedance of GaAs1-xPx LED's. Solid-State Electronics, 25, 355-357. doi: 10.1016/0038-1101(82)90119-8.
  • [14] Wu, X., Yang, E. S., Evans, H. L. (1990). Negative capacitance at metal‐semiconductor interfaces. Journal of Applied Physics, 68(6), 2845–2848. doi:10.1063/1.346442.
  • [15] Champness, C. H., Clark, W. R. (1990). Anomalous inductive effect in selenium Schottky diodes. Applied Physics Letters, 56(12), 1104–1106. doi:10.1063/1.102581.
  • [16] Wang, C. C., Liu, G. Z., He, M., Lu, H. B. (2008). Low-frequency negative capacitance in La0.8Sr0.2MnO3∕Nb-doped SrTiO3 heterojunction. Applied Physics Letters, 92(5), 052905. doi:10.1063/1.2840195.
  • [17] Perera, A. G. U., Shen, W. Z., Ershov, M., Liu, H. C., Buchanan, M., Schaff, W. J. (1999). Negative capacitance of GaAs homojunction far-infrared detectors. Applied Physics Letters, 74(21), 3167–3169. doi:10.1063/1.124169.
  • [18] Feng, L. F., Li, D., Zhu, C. Y., Wang, C. D., Cong, H. X., Xie, X. S., Lu, C. Z. (2007). Simultaneous sudden changes of electrical behavior at the threshold in laser diodes. Journal of Applied Physics, 102(6), 063102. doi:10.1063/1.2779278.
  • [19] Zhu, C. Y., Feng, L. F., Wang, C. D., Cong, H. X., Zhang, G. Y., Yang, Z. J., Chen, Z. Z. (2009). Negative capacitance in light-emitting devices. Solid-State Electronics, 53(3), 324–328. doi:10.1016/j.sse.2009.01.002.
  • [20] Zaidi, S. H., & Jonscher, A. K. (1987). Spectroscopy of delayed electronic transitions in GaAs Schottky diodes. Semiconductor Science and Technology, 2(9), 587–596. doi:10.1088/0268-1242/2/9/005.
  • [21] Ehrenfreund, E., Lungenschmied, C., Dennler, G., Neugebauer, H., & Sariciftci, N. S. (2007). Negative capacitance in organic semiconductor devices: Bipolar injection and charge recombination mechanism. Applied Physics Letters, 91(1), 012112. doi:10.1063/1.2752024.
  • [22] Ş. Çavdar, H. Koralay, Ş. Altındal. Effect of Vanadium Substitution on the Dielectric Properties of Glass Ceramic Bi-2212 Superconductor. J Low Temp Phys (2011) 164:102–114 DOI 10.1007/s10909-011-0361-1.
  • [23] Padma, R., Lakshmi, B. P., Reddy, V. R. (2013). Capacitance–frequency (C–f) and conductance–frequency (G–f) characteristics of Ir/n-InGaN Schottky diode as a function of temperature. Superlattices and Microstructures, 60, 358–369. doi:10.1016/j.spmi.2013.05.014.
  • [24] Çavdar, Ş., Koralay, H., Tuğluoğlu, N., Günen, A. (2005). Frequency-dependent dielectric characteristics of Tl–Ba–Ca–Cu–O bulk superconductor. Superconductor Science and Technology, 18(9), 1204–1209. doi:10.1088/0953-2048/18/9/010.
  • [25] Lal, B., Bamzai, K. K., Kotru, P. N., & Wanklyn, B. M. (2004). Microhardness, fracture mechanism and dielectric behaviour of flux-grown GdFeO3 single crystals. Materials Chemistry and Physics, 85(2-3), 353–365. doi:10.1016/j.matchemphys.2004.01.
  • [26] Reddy A V R, Mohan R G, Ravinder P and Boyanov B S (1999). High-frequency dielectric behaviour of polycrystalline zinc substituted cobalt ferrites. Journal of Materials Science, 34, 3169–3176.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Karekterizasyonu, Malzeme Üretim Teknolojileri
Bölüm Makaleler
Yazarlar

Naki Kaya 0000-0003-2287-676X

Haluk Koralay 0000-0001-7893-344X

Erken Görünüm Tarihi 26 Mart 2025
Yayımlanma Tarihi 28 Mart 2025
Gönderilme Tarihi 18 Aralık 2024
Kabul Tarihi 5 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 1

Kaynak Göster

APA Kaya, N., & Koralay, H. (2025). Frequency-Dependent Dielectric Characterization of Bi1.75Pb0.25Sr2Ca2Cu3-xSnxO10+δ Glass Ceramics System. Erzincan University Journal of Science and Technology, 18(1), 248-263. https://doi.org/10.18185/erzifbed.1603785