Araştırma Makalesi
BibTex RIS Kaynak Göster

Using Advanced Modelling Tools to Analyse Emission Impacts of Different Aircraft Models on Domestic Flights

Yıl 2025, Cilt: 18 Sayı: 1, 274 - 290, 28.03.2025
https://doi.org/10.18185/erzifbed.1627612

Öz

Havacılık sektörü, uçuş operasyonları sırasında oluşan gaz ve partikül madde emisyonlarının hassas bir şekilde ölçülmesi ve değerlendirilmesi yoluyla çevresel sürdürülebilirlik hedeflerine ulaşabilir. Araştırmada, aynı sayıda yolcu talebini karşılayacak geniş ve dar gövdeli uçaklar kullanarak İstanbul Sabiha Gökçen Havalimanı (LTFJ) ile Antalya Havalimanı (LTAI) arasında gerçekleştirilen farklı senaryolar üzerinden operasyonel ve çevresel etkileri analiz edilmektedir. Çalışma, EUROCONTROL'ün IMPACT web tabanlı platformu ve analiz için gerekli bilgileri sağlayan BADA veritabanı gibi araçlar kullanılarak gerçekleştirilmektedir. Bulgular incelendiğinde, geniş gövdeli uçağın LTAI-LTFJ ve LTFJ-LTAI rotalarında uçuşunu tamamladığında ortalama 24954 kg emisyona neden olduğu görülmektedir. Aynı sayıda yolcu kapasitesine ulaşmak için, bu rotalarda uçan iki dar gövdeli uçak ise 17617,6 kg emisyon üretmektedir. Çalışmanın sonuçları göstermektedir ki, operasyonel ve çevresel sürdürülebilirliği sağlamak için doğru uçak seçimi kritik bir rol oynamaktadır. Başka bir deyişle, daha düşük yakıt tüketimi ve emisyon değerlerini hedefleyen havayolları, IMPACT gibi web tabanlı gelişmiş modelleme araçlarını kullanarak filo yönetim stratejilerini daha doğru bir şekilde belirleyebilir.

Kaynakça

  • [1] Environmental Protection Agency (EPA). (2005). Regulatory Announcement No. EPA420-F-05–015, Office of Transportation and Air Quality.
  • [2] World Health Organization (WHO). (2006). WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Global Update 2005. Summary of Risk Assessment.
  • [3] Lee, D.S., Pitari, G., Grewe, V., Gierens, K., Penner, J.E., Petzold, A., Prather, M.J., Schumann, U., Bais, A., Berntsen, T., Iachetti, D., Lim, L.L. and Sausen, R. (2010),“Transport impacts on atmosphere and climate: aviation”, Atmospheric Environment (Environment), Vol. 44 No. 37, pp. 4678-4734.
  • [4] Duch, J. (2023). Reducing Carbon Emissions: EU Targets and Policies. Directorate General for Communication Article.
  • [5] Cokorilo, O. L. J. A., & Tomic, L. I. D. I. J. A. (2019). CORSIA-Carbon Offsetting and Reduction Scheme for International Aviation: Challenge and Practice. Topic: Next Generation Transport Industry Innovations, 1, 105.
  • [6] FAA Office of Environment and Energy. (2015). Aviation Emissions, Impacts & Mitigation A Primer
  • [7] Masiol, M. and Harrison, R. M. (2014). Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review.Atmospheric Environment, 95, 409-455.
  • [8] Baukal, C. (2005). Everything you need to know about NOx: Controlling and minimizing pollutant emissions is critical for meeting air quality regulations.Metal finishing, 103(11), 18-24.
  • [9] Celis, C., Sethi, V., Zammit-Mangion, D., Singh, R., & Pilidis, P. (2014). Theoretical optimal trajectories for reducing the environmental impact of commercial aircraft operations. Journal of Aerospace Technology and Management, 6, 29-42.
  • [10] Hammad, A. W., Rey, D., Bu-Qammaz, A., Grzybowska, H., & Akbarnezhad, A. (2020). Mathematical optimization in enhancing the sustainability of aircraft trajectory: A review. International Journal of Sustainable Transportation, 14(6), 413-436.
  • [11] Hasan, M. A., Mamun, A. A., Rahman, S. M., Malik, K., Al Amran, M. I. U., Khondaker, A. N., ... & Alismail, F. S. (2021). Climate change mitigation pathways for the aviation sector. Sustainability, 13(7), 3656.
  • [12] Liu, F., Hu, M., Lv, W., & Zhang, H. (2021). Research on optimization of aircraft climb trajectory considering environmental impact. Journal of Advanced Transportation, 2021(1), 6677329.
  • [13] Khardi, S. (2013). Applied methods validating aircraft flight path optimization. Theoretical and experimental considerations. Applied Mathematical Sciences, 7(45), 2209-2228.
  • [14] Wells, C. A., Williams, P. D., Nichols, N. K., Kalise, D., & Poll, I. (2021). Reducing transatlantic flight emissions by fuel-optimised routing. Environmental Research Letters, 16(2), 025002.
  • [15] Murrieta-Mendoza, A., & Botez, R. M. (2020). Commercial aircraft trajectory optimization to reduce flight costs and pollution: Metaheuristic algorithms. Advances in visualization and optimization techniques for multidisciplinary research: Trends in modelling and simulations for engineering applications, 33-62.
  • [16] Kılıç, U. (2023). A detailed emission analysis between regional jet and narrow-body passenger aircraft. International Journal of Energy Studies, 8(2), 201-213.
  • [17] Ekici, S., Ayar, M., Kilic, U., & Karakoc, T. H. (2023). Performance based analysis for the Ankara-London route in terms of emissions and fuel consumption of different combinations of aircraft/engine: An IMPACT application. Journal of Air Transport Management, 108, 102357.
  • [18] Kilic, U. (2023). A comparison of the environmental impact of turboprop and turbofan-powered aircraft. Aircraft Engineering and Aerospace Technology, 95(7), 1092-1098.
  • [19] Ekici, S., Ayar, M., & Karakoc, T. H. (2023). Fuel-saving and emission accounting: An airliner case study for green engine selection. Energy, 282, 128922.
  • [20] Ekici, S., Ayar, M., Orhan, I., & Karakoc, T. H. (2024). Cruise altitude patterns for minimizing fuel consumption and emission: A detailed analysis of five prominent aircraft. Energy, 295, 130989.
  • [21] ICAO (2011). Aircraft Engine Emissions Databank. International Civil Aviation Organization.
  • [22] https://www.antalya-airport.aero/anasayfa [04.11.2024]
  • [23] https://www.sabihagokcen.aero/anasayfa [14.12.2024]
  • [24] EUROCONTROL. Integrated aircraft noise and emissions modelling platform (IMPACT). https://www.eurocontrol.int/platform/integrated-aircraft-noise-and-emissions modelling-platform. [14.09.2024]
  • [25]EASA Aircraft Noise and Performance (ANP) Data | EASA. https://www.easa.europa.eu/domains/environment/policy-support-and research/aircraft-noise-and-performance-anp-data. [20.09.2024]
  • [26] EUROCONTROL Base of aircraft data (BADA) https://www.eurocontrol.int/model/bada. [20.08.2024]
  • [27] EUROCONTROL. Impact 3.36. User Guide; 2022.

Using Advanced Modelling Tools to Analyse Emission Impacts of Different Aircraft Models on Domestic Flights

Yıl 2025, Cilt: 18 Sayı: 1, 274 - 290, 28.03.2025
https://doi.org/10.18185/erzifbed.1627612

Öz

The aviation sector attains environmental sustainability objectives through precise measurement and assessment of gas and particulate matter emissions generated during flight operations. The research investigates the operational and environmental effects by performing different flight scenarios between Istanbul Sabiha Gökçen Airport (LTFJ) and Antalya Airport (LTAI) and using aircraft with wide-body and narrow-body types that meet identical passenger demands. The analysis is carried out using tools such as EUROCONTROL's IMPACT web-based platform and the BADA database that supplies the necessary information for analysis. When the findings are examined, it is seen that the wide-body aircraft completed its flight on the LTAI-LTFJ and LTFJ-LTAI routes and caused an average of 24954 kg of emissions. To achieve equivalent passenger capacity, two narrow-body aircraft operating on these routes produce an emission value of 17617.6 kg. The study's results underscore that the significance of aircraft selection for achieving operational and environmental sustainability plays a vital role. In other words, airlines targeting lower fuel consumption and emission values can determine fleet management strategies more accurately by using web-based advanced modeling tools, such as IMPACT.

Kaynakça

  • [1] Environmental Protection Agency (EPA). (2005). Regulatory Announcement No. EPA420-F-05–015, Office of Transportation and Air Quality.
  • [2] World Health Organization (WHO). (2006). WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Global Update 2005. Summary of Risk Assessment.
  • [3] Lee, D.S., Pitari, G., Grewe, V., Gierens, K., Penner, J.E., Petzold, A., Prather, M.J., Schumann, U., Bais, A., Berntsen, T., Iachetti, D., Lim, L.L. and Sausen, R. (2010),“Transport impacts on atmosphere and climate: aviation”, Atmospheric Environment (Environment), Vol. 44 No. 37, pp. 4678-4734.
  • [4] Duch, J. (2023). Reducing Carbon Emissions: EU Targets and Policies. Directorate General for Communication Article.
  • [5] Cokorilo, O. L. J. A., & Tomic, L. I. D. I. J. A. (2019). CORSIA-Carbon Offsetting and Reduction Scheme for International Aviation: Challenge and Practice. Topic: Next Generation Transport Industry Innovations, 1, 105.
  • [6] FAA Office of Environment and Energy. (2015). Aviation Emissions, Impacts & Mitigation A Primer
  • [7] Masiol, M. and Harrison, R. M. (2014). Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review.Atmospheric Environment, 95, 409-455.
  • [8] Baukal, C. (2005). Everything you need to know about NOx: Controlling and minimizing pollutant emissions is critical for meeting air quality regulations.Metal finishing, 103(11), 18-24.
  • [9] Celis, C., Sethi, V., Zammit-Mangion, D., Singh, R., & Pilidis, P. (2014). Theoretical optimal trajectories for reducing the environmental impact of commercial aircraft operations. Journal of Aerospace Technology and Management, 6, 29-42.
  • [10] Hammad, A. W., Rey, D., Bu-Qammaz, A., Grzybowska, H., & Akbarnezhad, A. (2020). Mathematical optimization in enhancing the sustainability of aircraft trajectory: A review. International Journal of Sustainable Transportation, 14(6), 413-436.
  • [11] Hasan, M. A., Mamun, A. A., Rahman, S. M., Malik, K., Al Amran, M. I. U., Khondaker, A. N., ... & Alismail, F. S. (2021). Climate change mitigation pathways for the aviation sector. Sustainability, 13(7), 3656.
  • [12] Liu, F., Hu, M., Lv, W., & Zhang, H. (2021). Research on optimization of aircraft climb trajectory considering environmental impact. Journal of Advanced Transportation, 2021(1), 6677329.
  • [13] Khardi, S. (2013). Applied methods validating aircraft flight path optimization. Theoretical and experimental considerations. Applied Mathematical Sciences, 7(45), 2209-2228.
  • [14] Wells, C. A., Williams, P. D., Nichols, N. K., Kalise, D., & Poll, I. (2021). Reducing transatlantic flight emissions by fuel-optimised routing. Environmental Research Letters, 16(2), 025002.
  • [15] Murrieta-Mendoza, A., & Botez, R. M. (2020). Commercial aircraft trajectory optimization to reduce flight costs and pollution: Metaheuristic algorithms. Advances in visualization and optimization techniques for multidisciplinary research: Trends in modelling and simulations for engineering applications, 33-62.
  • [16] Kılıç, U. (2023). A detailed emission analysis between regional jet and narrow-body passenger aircraft. International Journal of Energy Studies, 8(2), 201-213.
  • [17] Ekici, S., Ayar, M., Kilic, U., & Karakoc, T. H. (2023). Performance based analysis for the Ankara-London route in terms of emissions and fuel consumption of different combinations of aircraft/engine: An IMPACT application. Journal of Air Transport Management, 108, 102357.
  • [18] Kilic, U. (2023). A comparison of the environmental impact of turboprop and turbofan-powered aircraft. Aircraft Engineering and Aerospace Technology, 95(7), 1092-1098.
  • [19] Ekici, S., Ayar, M., & Karakoc, T. H. (2023). Fuel-saving and emission accounting: An airliner case study for green engine selection. Energy, 282, 128922.
  • [20] Ekici, S., Ayar, M., Orhan, I., & Karakoc, T. H. (2024). Cruise altitude patterns for minimizing fuel consumption and emission: A detailed analysis of five prominent aircraft. Energy, 295, 130989.
  • [21] ICAO (2011). Aircraft Engine Emissions Databank. International Civil Aviation Organization.
  • [22] https://www.antalya-airport.aero/anasayfa [04.11.2024]
  • [23] https://www.sabihagokcen.aero/anasayfa [14.12.2024]
  • [24] EUROCONTROL. Integrated aircraft noise and emissions modelling platform (IMPACT). https://www.eurocontrol.int/platform/integrated-aircraft-noise-and-emissions modelling-platform. [14.09.2024]
  • [25]EASA Aircraft Noise and Performance (ANP) Data | EASA. https://www.easa.europa.eu/domains/environment/policy-support-and research/aircraft-noise-and-performance-anp-data. [20.09.2024]
  • [26] EUROCONTROL Base of aircraft data (BADA) https://www.eurocontrol.int/model/bada. [20.08.2024]
  • [27] EUROCONTROL. Impact 3.36. User Guide; 2022.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Vehbi Emrah Atasoy 0000-0002-6781-9278

Erken Görünüm Tarihi 26 Mart 2025
Yayımlanma Tarihi 28 Mart 2025
Gönderilme Tarihi 27 Ocak 2025
Kabul Tarihi 3 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 1

Kaynak Göster

APA Atasoy, V. E. (2025). Using Advanced Modelling Tools to Analyse Emission Impacts of Different Aircraft Models on Domestic Flights. Erzincan University Journal of Science and Technology, 18(1), 274-290. https://doi.org/10.18185/erzifbed.1627612