Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Toxicity Parameters of La-TiO₂ Nanoparticles in Allium cepa L. Root Tip Cells

Yıl 2025, Cilt: 18 Sayı: 1, 291 - 311, 28.03.2025
https://doi.org/10.18185/erzifbed.1644806

Öz

In this study, the dose-dependent physiological, anatomical, and cytogenetic effects of lanthanum-doped titanium dioxide (La-TiO₂) nanoparticles, which are widely used today and have applications in electronics, optics, energy storage, and photocatalysis, were investigated in Allium cepa L. root tip cells. La-TiO₂ NPs were synthesized using the microwave method, and characterization analyses such as SEM and XRD were performed to ensure the desired nanoparticle properties before proceeding to in vivo parameters. In the study, physiological parameters including germination percentage, root length, and weight increase; cytogenetic indicators including chromosomal abnormality (CA), micronucleus (MN) frequency, and mitotic index (MI); and anatomical effects on meristematic cell damage were examined through sectioning, and the obtained data were statistically evaluated. The onion bulbs used as test materials were divided into five groups: Control (Group I) and groups Group II (10 ppm), Group III (25 ppm), Group IV (50 ppm) and Group V (100 ppm) exposed to different doses of La-TiO₂ nanoparticles. After a 72-hour application, it was determined that physiological parameters decreased in groups exposed to La-TiO₂ nanoparticles as the applied dose increased. Additionally, an increase in chromosomal abnormality (CA) and micronucleus (MN) frequency was observed. In terms of anatomical damage, epidermal cell damage, thickened cortical cell walls, flattened cell nuclei, and indistinct vascular tissues were detected in groups treated with La-TiO₂. As a result, it was demonstrated that the La-TiO₂ nanoparticles, synthesized in the desired sizes and used in this study, could cause cytotoxic, genotoxic, and anatomical damage in A. cepa L. root tip cells.

Etik Beyan

yok

Destekleyen Kurum

yok

Proje Numarası

yok

Teşekkür

yok

Kaynakça

  • [1] Álvarez, S. P., et al., (2019). Nanotechnology in the Life Sciences, Plant Nanobionics, Ram Prasad (Ed.) Nanotechnology and plant tissue culture. Volume 1, Advances in the Understanding of Nanomaterials Research and Applications (p.333-370). Springer Nature, Switzerland.
  • [2] 7. Seleiman, M. F., (2020). Nano-Fertilization as an emerging fertilization technique: why can modern agriculture benefit from its use? Plants, p. 10, 2
  • [3] Gatoo, M.A., Naseem, S., Arfat, M.Y., Dar, A.M., Qasim, K., and Zubair, S. (2014). Physicochemical properties of nanomaterials: Implication in associated toxic manifestation. Bio Med Research International,498420.
  • [4] Foroozandeh, P., Aziz., A.A., (2018). Insight into cellular uptake and intracellular tracking of nanoparticles. Nanoscale Research Letters, 13:339-339.
  • [5] Oberdörster, G., Oberdörster, E., Oberdörster, J., (2005). Nanotoxicology: an emerging discipline evolving from studies of utrafine particles. Environmental Health Perspectives, 113:823-839.
  • [6] Tortella GR, Rubilar O, Duran N, Diez MC, Martinez M, Parada J, Seabra AB., (2020). Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment, Journal of Hazardous Materials, 390:121974.
  • [7] Beji Z., Hanini A., Smiri L.S., Gavard J., Kacem K., Villain F., Grenèche J.M., Chau F. and Ammar S., (2010). Magnetic properties of Znsubstituted MnFe2O4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on Endothelial cells, Chem. Mater. 22(19) 5420- 5429.
  • [8] Foldbjerg, R., Dang, D. A., and Autrup, H., (2011). Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Archives of Toxicology, 85(7) 743-750.
  • [9] Fiskesjö, G. (1985). The Allium test as a standard in environmental monitoring. Hereditas, 102: 99-112. [10] Kiser MA., (2009). Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43 (17) 6757–6763.
  • [11] Cansız, E. İ. and S. Kirmusaoğlu., (2018). Nanoteknolojide nano gümüşün antibakteriyel özelliği. Haliç Üniversitesi Fen Bilimleri Dergisi. 1: p. 119-130.
  • [12] Klancnik K, Drobne D, Valant J, DolencKoce J., (2011). Use of a modified Allium test with nanoTiO2. Ecotoxicol Environ Safe 74; 85–92.
  • [13] Ghosh M, Bandyopadhyay M, Mukherjee A., (2010). Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes. Chemospher 81(10) 1253–1262.
  • [14] Pakrashi S, Jain N, Dalai S, Jayakumar J, Chandrasekaran PT, et al., (2014). In Vivo Genotoxicity Assessment of Titanium Dioxide Nanoparticles by Allium cepa Root Tip Assay at High Exposure Concentrations.
  • [15] Ramos, S.J., Dinali, G.S., Oliveira, C., Martins, G.C., Moreira, C.G., Siqueira, J.O., Guilherme, L.R., (2016). Rare earth elements in the soil environment, Curr. Pollut. Rep. 2, 28–50.
  • [16] Jaramillo-Fierro, X.; León, R. (2023). Effect of Doping TiO2 NPs with Lanthanides (La, Ce and Eu) on the Adsorption and Photodegradation of Cyanide-A Comparative Study. Nanomaterials, 13, 1068.
  • [17] Ndabankulu, V.O.; Maddila, S.; Jonnalagadda, S.B. (2019). Synthesis of lanthanide-doped TiO2 nanoparticles and their photocatalytic activity under visible light. Can. J. Chem. 97, 672–681.
  • [18] Mazierski, P.; Mikolajczyk, A.; Bajorowicz, B.; Malankowska, A.; Zaleska-Medynska, A.; Nadolna, J. (2018). The role of lanthanides in TiO2-based photocatalysis: A review. Appl. Catal. B Environ. 233, 301–317.
  • [19] Sharma P., Jha A.B., Dubey R.S., (2024). Addressing lanthanum toxicity in plants: Sources, uptake, accumulation, and mitigation strategies, Sci. Total Environ. 929 172560.
  • [20] Kotelnikova, A., Fastovets, I., Rogova, O., Volkov, D.S., Stolbova, V., (2019). Toxicity assay of lanthanum and cerium in solutions and soil, Ecotoxicol. Environ. Saf. 167, 20–28.
  • [21] D'Aquino,L.,Pinto,M.C.,Nardi,L.,Morgana,M.,Tommasi,F., (2009). Effect of some light rare earth element son seed germination, seedling growth and antioxidant metabolism in Triticum durum. Chemosphere 75, 900–905.
  • [22] de Oliveira, C., Ramos, S.J., Siqueira, J.O., Faquin, V., de Castro, E.M., Amaral, D.C., Guilherme, L.R., (2015). Bioaccumulation and effects of lanthanum on growth and mitotic index in soybean plants. Ecotoxicol. Environ. Saf. 122, 136–144.
  • [23] Catalán, J., Järventaus, H., Vippola, M., Savolainen, K., and Norppa, H. (2012). Induction of chromosomal aberrations by carbon nanotubes and titanium dioxide nanoparticles in human lymphocytes in vitro. Nanotoxicology, 6(8), 825-836.
  • [24] Qian XW., (2004). Mutagenic effects of chromium trioxide on root tip cells of Vicia faba. J Zhejiang Univ Sci. 5(12) 1570–1576.
  • [25] Staykova TA., Ivanova EN., Velcheva IG., (2005). Cytogenetic effect of heavy metal and cyanide in contamined waters from the region of Southwest Bulgaria, J Cell Mol Biol 4 (1) 41-46.
  • [26] Fenech, M., Chang. W.P., Kirsch-Volders, M., Holland, N., Bonassi, S., Zeiger, E., (2003). Human Micronnucleus Project. HUMN Project: Detailed Description Of The Scoring Criteria For The Cytokinesis-Block Micronucleus Assay Using Isolated Human Lymphocyte Cultures. Mutation Research, 534(1,2), 65-75.
  • [27] Yalçin, E., Çavuşoğlu, K., (2022). Toxicity assessment of potassium bromate and the remedial role of grape seed extract. Sci. Rep. 12, 20529.
  • [28] Xiang, L., Liu, X., Yang, C., Lei, Q., Zhao, J., Zhao, X., (2021). Ultrafast synthesis of anatase TiO2 microspheres doped with rare-earth by one-step microwave method. Inorg. Chem. Commun. 127, 108532.
  • [29] Cpraru A, Moac EA, Pcurariu C, Iano R, Lazu R, Barbu-Tudoran L (2021). Development and characterization of magnetic iron oxide nanoparticles using microwave for the combustion reaction ignition, as possible candidates for biomedical applications. Powder Technol 394:1026–1038.
  • [30] Kannan, K., Radhika D, Gnanasangeetha D, Lakkaboyana SK, Sadasivuni KK, Gurushankar K, Hanafiah MM (2021). Photocatalytic and antimicrobial properties of microwave synthesized mixed metal oxide nanocomposite. Inorg Chem Commun 125:108429.
  • [31] Muthuvel, A., Said, N.M., Jothibas, M. et al. (2021). Microwave-assisted green synthesis of nanoscaled titanium oxide: photocatalyst, antibacterial and antioxidant properties. J Mater Sci: Mater Electron 32, 23522–23539.
  • [32] Pol, V.G., Langzam., Y., Zaban., A., (2007). Application of microwave superheating for the synthesis of TiO2 rods, Langmuir 23 11211–11216.
  • [33] Yoon, S., Lee., E.S., Manthiram., A., (2012). Microwave-solvothermal synthesis of various polymorphs of nanostructured TiO2 in different alcohol media and their lithium ion storage properties, Inorg. Chem. 51 3505–3512.
  • [34] Sebesta, M.; Ramakanth, I.; Zverina, O.; Seda, M.; Divis, P.;Kolencık, M., (2021). Effects of Titanium Dioxide Nanomaterials on Plants Growth. In Nanotechnology in Plant Growth Promotionand Protection: Recent Advances and Impacts; Ingle, A. P., Eds.; John Wiley and Sons Ltd: New Jeysey, 17–44.
  • [35] Kořenková, L., Šebesta, M., Urík, M. et al. (2017). Physiological response of culture mediagrown barley (Hordeum vulgare L.) to titanium oxide nanoparticles. Acta Agriculturae Scandinavica Section B Soil and Plant Science 67 (4) 285–291.
  • [36] Gonzalez, V., Vignati D.A., Leyval C., (2014). Giamberini L. Environmental fate and ecotoxicity of lanthanides: Are they a uniform group beyond chemistry?, Environ. Int., V. 71, pp. 148–157.
  • [37] Van Steveninck, R.F.M., Van Steveninck, M.E., Chescoe, D., (1976). Intracellular binding of lanthanum in root tips of barley (Hordeum vulgare). Protoplasma 90, 89–97.
  • [38] Liu, M., Hasenstein, KH., (2005). La3+ uptake and its effect on the cytoskeleton in root protoplasts of Zea mays L. Planta. 220, 658–666.
  • [39] Shaymurat, T., Gu, J., Xu, C., Yang, Z., Zhao, Q., Liu, Y., Liu, Y., (2012), Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology 6 (3) 241–248.
  • [40] Wang, C., Lu, X., Tian, Y., Cheng, T., Hu, L., Chen, F., Jiang, C., Wang, X., (2011). Lanthanum resulted in unbalance of nutrient elements and disturbance of cell proliferation cycles in V. faba L. seedlings. Biol. Trace Elem. Res. 143, 1174–1181.
  • [41] Demir, E., Kaya, N., Kaya, B., (2014), Genotoxic effects of Zinc oxide and Titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. Turkish Journal of Biology, 38, 31-39.
  • [42] Filho. R., Vicari T., Santos. S., Felisbino K., Mattoso N., Santos B.F.S., Cestari. M.M., Leme D.M., Genotoxicity of titanium dioxide nanoparticles and triggering of defense mechanisms in Allium cepa, (2019), Genetics and Molecular Biology, 42, 2, 425-435.
  • [43] Castiglione, M., Giorgetti, L., Bellani, L., Muccifora, S., Bottega, S., Spanò, C. (2016). Root responses to different types of TiO2 nanoparticles and bulk counterpart in plant model system Vicia faba L. Environmental And Experimental Botany, 130, 11-21.
  • [44] Bellani, L., Muccifora, S., Barbieri, F., Tassi, E., Castiglione, M. R. Giorgetti, L. (2020). Genotoxicity of the food additive E171, titanium dioxide, in the plants Lens culinaris L. and Allium cepa L. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 849: 503142.
  • [45] Larue, C., Veronesi, G., Flank, A.-M. et al. (2012b). Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. Journal of Toxicology and Environmental Health, Part A 75 (13–15) 722–734.
  • [46] Larue, C., Laurette, J., Herlin-Boime, N. et al. (2012 a). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Science of the Total Environment 431,197–208.
  • [47] X. Shan, H. Wang, S. Zhang, H. Zhou, Y. Zheng, H. Yu, and B. Wen, (2003). “Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma,” Plant Sci. 165 (6), 1343–1353.

Investigation of Toxicity Parameters of La-TiO₂ Nanoparticles in Allium cepa L. Root Tip Cells

Yıl 2025, Cilt: 18 Sayı: 1, 291 - 311, 28.03.2025
https://doi.org/10.18185/erzifbed.1644806

Öz

Bu çalışmada günümüzde artık yaygın kullanılan nanopartiküllerden (NP) biri olan ve elektronik ve optik uygulamalar, enerji depolama ve fotokatalizör olarak da kullanılan Lantan katkılı titantum dioksit (La-TiO2) nanopartiküllerinin Allium cepa L. kök ucu hücrelerinde meydana getirdiği doza bağlı fizyolojik, anatomik ve sitogenetik etkileri araştırılmıştır. Mikrodalga yöntemiyle sentezlenen La-TiO2 NP’lerin SEM, XRD gibi karakterizasyon analizleri yapılıp istenen özellikte bir nanopartikül sentezinden sonra çalışmadaki in vivo parametrelere geçilmiştir. Çalışmada fizyolojik parametreler açısından: çimlenme yüzdesi, kök uzunluğu ve ağırlık artışı; sitogenetik indikatörler açısından kromozom anormalliği (KA), mikronükleus (MN) sıklığı, mitotik indeks (MI); anatomik olarak meristematik hücre hasarları kesitler alınarak incelenmiş ve elde edilen veriler istatistiksel açıdan değerlendirilmiştir. Test materyali olarak kullanılan soğanlar kontrol (Grup I) ve La-TiO2 naopartikülü ile farklı dozlarlarda uygulanan Grup II (10 ppm), Grup III (25 ppm), Grup IV (50 ppm) ve Grup V (100 ppm) olmak üzere beş gruba ayrılmıştır. 72 saat yapılan uygulama sonucunda La-TiO2 nanopartiküle maruz bırakılan gruplarda uygulanan doz miktarındaki artışa bağlı olarak fizyolojik parametrelerde azalma meydana geldiği belirlenmiş olup, KA ve MN sıklığı açısından bir artış olduğu tespit edilmiştir. Anatomik hasarlar bakımından epidermal hücre hasarı, kalınlaşmış korteks hücre duvarı, yassılaşmış hücre çekirdekleri ve belirgin olmayan iletim dokusu La-TiO2 uygulanan gruplarda gözlemlenmiştir. Sonuç olarak istenen boyutlarda sentezlenen ve çalışmada kullanılan La-TiO2 NP’lerin A.cepa L. kök ucu hücrelerde sitotoksik, genotoksik ve anatomik hasara sebep olan etkiler oluşturabildiği gösterilmiştir.

Proje Numarası

yok

Kaynakça

  • [1] Álvarez, S. P., et al., (2019). Nanotechnology in the Life Sciences, Plant Nanobionics, Ram Prasad (Ed.) Nanotechnology and plant tissue culture. Volume 1, Advances in the Understanding of Nanomaterials Research and Applications (p.333-370). Springer Nature, Switzerland.
  • [2] 7. Seleiman, M. F., (2020). Nano-Fertilization as an emerging fertilization technique: why can modern agriculture benefit from its use? Plants, p. 10, 2
  • [3] Gatoo, M.A., Naseem, S., Arfat, M.Y., Dar, A.M., Qasim, K., and Zubair, S. (2014). Physicochemical properties of nanomaterials: Implication in associated toxic manifestation. Bio Med Research International,498420.
  • [4] Foroozandeh, P., Aziz., A.A., (2018). Insight into cellular uptake and intracellular tracking of nanoparticles. Nanoscale Research Letters, 13:339-339.
  • [5] Oberdörster, G., Oberdörster, E., Oberdörster, J., (2005). Nanotoxicology: an emerging discipline evolving from studies of utrafine particles. Environmental Health Perspectives, 113:823-839.
  • [6] Tortella GR, Rubilar O, Duran N, Diez MC, Martinez M, Parada J, Seabra AB., (2020). Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment, Journal of Hazardous Materials, 390:121974.
  • [7] Beji Z., Hanini A., Smiri L.S., Gavard J., Kacem K., Villain F., Grenèche J.M., Chau F. and Ammar S., (2010). Magnetic properties of Znsubstituted MnFe2O4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on Endothelial cells, Chem. Mater. 22(19) 5420- 5429.
  • [8] Foldbjerg, R., Dang, D. A., and Autrup, H., (2011). Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Archives of Toxicology, 85(7) 743-750.
  • [9] Fiskesjö, G. (1985). The Allium test as a standard in environmental monitoring. Hereditas, 102: 99-112. [10] Kiser MA., (2009). Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43 (17) 6757–6763.
  • [11] Cansız, E. İ. and S. Kirmusaoğlu., (2018). Nanoteknolojide nano gümüşün antibakteriyel özelliği. Haliç Üniversitesi Fen Bilimleri Dergisi. 1: p. 119-130.
  • [12] Klancnik K, Drobne D, Valant J, DolencKoce J., (2011). Use of a modified Allium test with nanoTiO2. Ecotoxicol Environ Safe 74; 85–92.
  • [13] Ghosh M, Bandyopadhyay M, Mukherjee A., (2010). Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes. Chemospher 81(10) 1253–1262.
  • [14] Pakrashi S, Jain N, Dalai S, Jayakumar J, Chandrasekaran PT, et al., (2014). In Vivo Genotoxicity Assessment of Titanium Dioxide Nanoparticles by Allium cepa Root Tip Assay at High Exposure Concentrations.
  • [15] Ramos, S.J., Dinali, G.S., Oliveira, C., Martins, G.C., Moreira, C.G., Siqueira, J.O., Guilherme, L.R., (2016). Rare earth elements in the soil environment, Curr. Pollut. Rep. 2, 28–50.
  • [16] Jaramillo-Fierro, X.; León, R. (2023). Effect of Doping TiO2 NPs with Lanthanides (La, Ce and Eu) on the Adsorption and Photodegradation of Cyanide-A Comparative Study. Nanomaterials, 13, 1068.
  • [17] Ndabankulu, V.O.; Maddila, S.; Jonnalagadda, S.B. (2019). Synthesis of lanthanide-doped TiO2 nanoparticles and their photocatalytic activity under visible light. Can. J. Chem. 97, 672–681.
  • [18] Mazierski, P.; Mikolajczyk, A.; Bajorowicz, B.; Malankowska, A.; Zaleska-Medynska, A.; Nadolna, J. (2018). The role of lanthanides in TiO2-based photocatalysis: A review. Appl. Catal. B Environ. 233, 301–317.
  • [19] Sharma P., Jha A.B., Dubey R.S., (2024). Addressing lanthanum toxicity in plants: Sources, uptake, accumulation, and mitigation strategies, Sci. Total Environ. 929 172560.
  • [20] Kotelnikova, A., Fastovets, I., Rogova, O., Volkov, D.S., Stolbova, V., (2019). Toxicity assay of lanthanum and cerium in solutions and soil, Ecotoxicol. Environ. Saf. 167, 20–28.
  • [21] D'Aquino,L.,Pinto,M.C.,Nardi,L.,Morgana,M.,Tommasi,F., (2009). Effect of some light rare earth element son seed germination, seedling growth and antioxidant metabolism in Triticum durum. Chemosphere 75, 900–905.
  • [22] de Oliveira, C., Ramos, S.J., Siqueira, J.O., Faquin, V., de Castro, E.M., Amaral, D.C., Guilherme, L.R., (2015). Bioaccumulation and effects of lanthanum on growth and mitotic index in soybean plants. Ecotoxicol. Environ. Saf. 122, 136–144.
  • [23] Catalán, J., Järventaus, H., Vippola, M., Savolainen, K., and Norppa, H. (2012). Induction of chromosomal aberrations by carbon nanotubes and titanium dioxide nanoparticles in human lymphocytes in vitro. Nanotoxicology, 6(8), 825-836.
  • [24] Qian XW., (2004). Mutagenic effects of chromium trioxide on root tip cells of Vicia faba. J Zhejiang Univ Sci. 5(12) 1570–1576.
  • [25] Staykova TA., Ivanova EN., Velcheva IG., (2005). Cytogenetic effect of heavy metal and cyanide in contamined waters from the region of Southwest Bulgaria, J Cell Mol Biol 4 (1) 41-46.
  • [26] Fenech, M., Chang. W.P., Kirsch-Volders, M., Holland, N., Bonassi, S., Zeiger, E., (2003). Human Micronnucleus Project. HUMN Project: Detailed Description Of The Scoring Criteria For The Cytokinesis-Block Micronucleus Assay Using Isolated Human Lymphocyte Cultures. Mutation Research, 534(1,2), 65-75.
  • [27] Yalçin, E., Çavuşoğlu, K., (2022). Toxicity assessment of potassium bromate and the remedial role of grape seed extract. Sci. Rep. 12, 20529.
  • [28] Xiang, L., Liu, X., Yang, C., Lei, Q., Zhao, J., Zhao, X., (2021). Ultrafast synthesis of anatase TiO2 microspheres doped with rare-earth by one-step microwave method. Inorg. Chem. Commun. 127, 108532.
  • [29] Cpraru A, Moac EA, Pcurariu C, Iano R, Lazu R, Barbu-Tudoran L (2021). Development and characterization of magnetic iron oxide nanoparticles using microwave for the combustion reaction ignition, as possible candidates for biomedical applications. Powder Technol 394:1026–1038.
  • [30] Kannan, K., Radhika D, Gnanasangeetha D, Lakkaboyana SK, Sadasivuni KK, Gurushankar K, Hanafiah MM (2021). Photocatalytic and antimicrobial properties of microwave synthesized mixed metal oxide nanocomposite. Inorg Chem Commun 125:108429.
  • [31] Muthuvel, A., Said, N.M., Jothibas, M. et al. (2021). Microwave-assisted green synthesis of nanoscaled titanium oxide: photocatalyst, antibacterial and antioxidant properties. J Mater Sci: Mater Electron 32, 23522–23539.
  • [32] Pol, V.G., Langzam., Y., Zaban., A., (2007). Application of microwave superheating for the synthesis of TiO2 rods, Langmuir 23 11211–11216.
  • [33] Yoon, S., Lee., E.S., Manthiram., A., (2012). Microwave-solvothermal synthesis of various polymorphs of nanostructured TiO2 in different alcohol media and their lithium ion storage properties, Inorg. Chem. 51 3505–3512.
  • [34] Sebesta, M.; Ramakanth, I.; Zverina, O.; Seda, M.; Divis, P.;Kolencık, M., (2021). Effects of Titanium Dioxide Nanomaterials on Plants Growth. In Nanotechnology in Plant Growth Promotionand Protection: Recent Advances and Impacts; Ingle, A. P., Eds.; John Wiley and Sons Ltd: New Jeysey, 17–44.
  • [35] Kořenková, L., Šebesta, M., Urík, M. et al. (2017). Physiological response of culture mediagrown barley (Hordeum vulgare L.) to titanium oxide nanoparticles. Acta Agriculturae Scandinavica Section B Soil and Plant Science 67 (4) 285–291.
  • [36] Gonzalez, V., Vignati D.A., Leyval C., (2014). Giamberini L. Environmental fate and ecotoxicity of lanthanides: Are they a uniform group beyond chemistry?, Environ. Int., V. 71, pp. 148–157.
  • [37] Van Steveninck, R.F.M., Van Steveninck, M.E., Chescoe, D., (1976). Intracellular binding of lanthanum in root tips of barley (Hordeum vulgare). Protoplasma 90, 89–97.
  • [38] Liu, M., Hasenstein, KH., (2005). La3+ uptake and its effect on the cytoskeleton in root protoplasts of Zea mays L. Planta. 220, 658–666.
  • [39] Shaymurat, T., Gu, J., Xu, C., Yang, Z., Zhao, Q., Liu, Y., Liu, Y., (2012), Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology 6 (3) 241–248.
  • [40] Wang, C., Lu, X., Tian, Y., Cheng, T., Hu, L., Chen, F., Jiang, C., Wang, X., (2011). Lanthanum resulted in unbalance of nutrient elements and disturbance of cell proliferation cycles in V. faba L. seedlings. Biol. Trace Elem. Res. 143, 1174–1181.
  • [41] Demir, E., Kaya, N., Kaya, B., (2014), Genotoxic effects of Zinc oxide and Titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. Turkish Journal of Biology, 38, 31-39.
  • [42] Filho. R., Vicari T., Santos. S., Felisbino K., Mattoso N., Santos B.F.S., Cestari. M.M., Leme D.M., Genotoxicity of titanium dioxide nanoparticles and triggering of defense mechanisms in Allium cepa, (2019), Genetics and Molecular Biology, 42, 2, 425-435.
  • [43] Castiglione, M., Giorgetti, L., Bellani, L., Muccifora, S., Bottega, S., Spanò, C. (2016). Root responses to different types of TiO2 nanoparticles and bulk counterpart in plant model system Vicia faba L. Environmental And Experimental Botany, 130, 11-21.
  • [44] Bellani, L., Muccifora, S., Barbieri, F., Tassi, E., Castiglione, M. R. Giorgetti, L. (2020). Genotoxicity of the food additive E171, titanium dioxide, in the plants Lens culinaris L. and Allium cepa L. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 849: 503142.
  • [45] Larue, C., Veronesi, G., Flank, A.-M. et al. (2012b). Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. Journal of Toxicology and Environmental Health, Part A 75 (13–15) 722–734.
  • [46] Larue, C., Laurette, J., Herlin-Boime, N. et al. (2012 a). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Science of the Total Environment 431,197–208.
  • [47] X. Shan, H. Wang, S. Zhang, H. Zhou, Y. Zheng, H. Yu, and B. Wen, (2003). “Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma,” Plant Sci. 165 (6), 1343–1353.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Hücresi ve Moleküler Biyoloji, Nanokimya
Bölüm Makaleler
Yazarlar

Aytül Uzun Akgeyik 0000-0002-5602-0524

Emrah Akgeyik 0000-0002-6626-0150

Proje Numarası yok
Erken Görünüm Tarihi 26 Mart 2025
Yayımlanma Tarihi 28 Mart 2025
Gönderilme Tarihi 25 Şubat 2025
Kabul Tarihi 19 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 1

Kaynak Göster

APA Uzun Akgeyik, A., & Akgeyik, E. (2025). Investigation of Toxicity Parameters of La-TiO₂ Nanoparticles in Allium cepa L. Root Tip Cells. Erzincan University Journal of Science and Technology, 18(1), 291-311. https://doi.org/10.18185/erzifbed.1644806