Araştırma Makalesi
BibTex RIS Kaynak Göster

Vulpinic Acid Targets WNT/β-Catenin Signalling Pathway in HeLa Cells

Yıl 2025, Cilt: 18 Sayı: 2, 495 - 504, 31.08.2025
https://doi.org/10.18185/erzifbed.1595902

Öz

Cervical cancer is one of the most common cancers in women. Due to the side effects and inadequate treatment methods of current cancer drugs used in the treatment of cervical cancer, it is important to develop new treatment strategies. Vulpinic acid (VA), a natural lichen secondary metabolite with many remarkable biological activities, has no detailed study describing its potential anti-cancer molecular mechanism in cervical cancer HeLa cell line. We reported in our previous study that VA exhibited anti-proliferative, apoptotic, and anti-migratory properties in HeLa cells and the IC50 dose of VA in HeLa cells was calculated as 66.53 µg/mL at 48 h. The effect of VA on the WNT/β-catenin signaling pathway, which plays a role in various biological processes including tumorigenesis, cell proliferation, cell cycle regulation, embryogenesis, metastasis, cellular differentiation, apoptosis and drug resistance, is unknown. In this study, we aimed to elucidate whether VA exerts its antimigratory effect on HeLa cells treated with IC50 dose through the WNT/β-catenin signalling pathway. In summary, this study demonstrated that the suppression of migration of HeLa cells by VA may be mediated by inhibition of the WNT/β-catenin signalling pathway. VA may be a natural active compound candidate for the therapy of human cervical cancer and may be among the inhibitory candidates of the WNT/β-catenin signalling pathway.

Proje Numarası

No funding was received to assist with the preparation of this manuscript.

Kaynakça

  • [1. Mohammadi M, Bagheri L, Badreldin A, et al. Biological Effects of Gyrophoric Acid and Other Lichen Derived Metabolites, on Cell Proliferation, Apoptosis and Cell Signaling pathways. Chem Biol Interact. 2022;351:109768. doi:10.1016/j.cbi.2021.109768
  • 2. Solárová Z, Liskova A, Samec M, Kubatka P, Büsselberg D, Solár P. Anticancer Potential of Lichens’ Secondary Metabolites. Biomolecules. 2020;10(1):87. doi:10.3390/biom10010087
  • 3. Cardile V, Graziano ACE, Avola R, Piovano M, Russo A. Potential anticancer activity of lichen secondary metabolite physodic acid. Chem Biol Interact. 2017;263:36-45. doi:10.1016/j.cbi.2016.12.007
  • 4. Goga M, Elečko J, Marcinčinová M, Ručová D, Bačkorová M, Bačkor M. Lichen Metabolites: An Overview of Some Secondary Metabolites and Their Biological Potential. In: ; 2018:1-36. doi:10.1007/978-3-319-76887-8_57-1
  • 5. Kalın ŞN, Altay A, Budak H. Inhibition of thioredoxin reductase 1 by vulpinic acid suppresses the proliferation and migration of human breast carcinoma. Life Sci. 2022;310:121093. doi:10.1016/j.lfs.2022.121093
  • 6. Yi SA, Nam KH, Kim S, et al. Vulpinic Acid Controls Stem Cell Fate toward Osteogenesis and Adipogenesis. Genes (Basel). 2019;11(1):18. doi:10.3390/genes11010018
  • 7. Sulukoğlu EK, Günaydın Ş, Kalın ŞN, Altay A, Budak H. Diffractaic acid exerts anti- cancer effects on hepatocellular carcinoma HepG2 cells by inducing apoptosis and suppressing migration through targeting thioredoxin reductase 1. Naunyn Schmiedebergs Arch Pharmacol. 2024;397(8):5745-5755. doi:10.1007/s00210-024- 02980-5
  • 8. Piroozmand A, Mostafavi Zadeh SM, Madani A, et al. The Association of High Risk Human Papillomaviruses in Patients With Cervical Cancer: An Evidence Based Study on Patients With Squamous Cell Dysplasia or Carcinoma for Evaluation of 23 Human Papilloma Virus Genotypes. Jundishapur J Microbiol. 2016;9(4). doi:10.5812/jjm.32728
  • 9. Alharbi KS, Almalki WH, Alzarea SI, et al. A narrative review on the biology of piezo1 with platelet-rich plasma in cardiac cell regeneration. Chem Biol Interact. 2022;363:110011. doi:10.1016/J.CBI.2022.110011
  • 10. Alharbi H, Alshehri AS, Ahmad M, Guo WW. Promising anti- cervical carcinoma and inflammatory agent, Resveratrol targets poly (ADP-ribose) polymerase 1 (PARP-1) induced premature ovarian failure with a potent enzymatic modulatory activity. J Reprod Immunol. 2021;144:103272. doi:10.1016/j.jri.2021.103272
  • 11. Liu J, Xiao Q, Xiao J, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7(1):3. doi:10.1038/s41392-021-00762-6
  • 12. Stamos JL, Chu MLH, Enos MD, Shah N, Weis WI. Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6. Elife. 2014;3. doi:10.7554/eLife.01998
  • 13. Liu C, Li Y, Semenov M, et al. Control of β-Catenin Phosphorylation/Degradation by a Dual-Kinase Mechanism. Cell. 2002;108(6):837-847. doi:10.1016/S0092- 8674(02)00685-2
  • 14. Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13(1):165. doi:10.1186/s13045-020-00990-3
  • 15. Jung YS, Park JI. Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Exp Mol Med. 2020;52(2):183-191. doi:10.1038/s12276-020-0380-6
  • 16. Lawrey JD. Biological Role of Lichen Substances. Bryologist. 1986;89(2):111. doi:10.2307/3242751
  • 17. Kowalski M, Hausner G, Piercey-Normore MD. Bioactivity of secondary metabolites and thallus extracts from lichen fungi. Mycoscience. 2011;52(6):413-418. doi:10.1007/S10267-011-0118-3
  • 18. Varol M, Türk A, Candan M, Tay T, Koparal AT. Photoprotective Activity of Vulpinic and Gyrophoric Acids Toward Ultraviolet B-Induced Damage in Human Keratinocytes. Phyther Res. 2016;30(1):9-15. doi:10.1002/ptr.5493
  • 19. Budak B, Kalın ŞN, Yapça ÖE. Antiproliferative, antimigratory, and apoptotic effects of diffractaic and vulpinic acids as thioredoxin reductase 1 inhibitors on cervical cancer. Naunyn Schmiedebergs Arch Pharmacol. 2024;397(3):1525-1535. doi:10.1007/s00210-023-02698-w
  • 20. Karağaç MS, Yeşilkent EN, Kizir D, et al. Esculetin improves inflammation of the kidney via gene expression against doxorubicin-induced nephrotoxicity in rats: In vivo and in silico studies. Food Biosci. 2024;62:105159. doi:10.1016/j.fbio.2024.105159
  • 21. Kizir D, Karaman M, Demir Y, Ceylan H. Effect of tannic acid on doxorubicin‐induced cellular stress: Expression levels of heat shock genes in rat spleen. Biotechnol Appl Biochem. 2024;71(6):1339-1345. doi:10.1002/bab.2633
  • 22. Kalın ŞN, Altay A, Budak H. Effect of evernic acid on human breast cancer MCF‐7 and MDA‐MB‐453 cell lines via thioredoxin reductase 1: A molecular approach. J Appl Toxicol. 2023;43(8):1148-1158. doi:10.1002/jat.4451
  • 23. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real- Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25(4):402-408. doi:10.1006/meth.2001.1262
  • 24. Zhou Y, Huang Y, Cao X, et al. WNT2 Promotes Cervical Carcinoma Metastasis and Induction of Epithelial-Mesenchymal Transition. Tang CH, ed. PLoS One. 2016;11(8):e0160414. doi:10.1371/journal.pone.0160414
  • 25. Jung YS, Jun S, Lee SH, Sharma A, Park JI. Wnt2 complements Wnt/β-catenin signaling in colorectal cancer. Oncotarget. 2015;6(35):37257-37268. doi:10.18632/oncotarget.6133
  • 26. Yu F, Yu C, Li F, et al. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 2021;6(1):307. doi:10.1038/s41392-021-00701-5
  • 27. Thadhani VM, Karunaratne V. Potential of Lichen Compounds as Antidiabetic Agents with Antioxidative Properties: A Review. Sun X, ed. Oxid Med Cell Longev.2017;2017(1). doi:10.1155/2017/2079697
  • 28. Unterleuthner D, Neuhold P, Schwarz K, et al. Cancer-associated fibroblast-derived WNT2 increases tumor angiogenesis in colon cancer. Angiogenesis. 2020;23(2):159- 177. doi:10.1007/s10456-019-09688-8
  • 29. Huguet EL, McMahon JA, McMahon AP, Bicknell R, Harris AL. Differential expression of human Wnt genes 2, 3, 4, and 7B in human breast cell lines and normal and disease states of human breast tissue. Cancer Res. 1994;54(10):2615-2621. http://www.ncbi.nlm.nih.gov/pubmed/8168088
  • 30. Jiang H, Li Q, He C, et al. Activation of the Wnt pathway through Wnt2 promotes metastasis in pancreatic cancer. Am J Cancer Res. 2014;4(5):537-544. http://www.ncbi.nlm.nih.gov/pubmed/25232495
  • 31. Qiu L, Sun Y, Ning H, Chen G, Zhao W, Gao Y. The scaffold protein AXIN1: gene ontology, signal network, and physiological function. Cell Commun Signal. 2024;22(1):77. doi:10.1186/s12964-024-01482-4
  • 32. Yan M, Li G, An J. Discovery of small molecule inhibitors of the Wnt/β-catenin signaling pathway by targeting β-catenin/Tcf4 interactions. Exp Biol Med. 2017;242(11):1185-1197. doi:10.1177/1535370217708198
  • 33. Liu D, Chen L, Zhao H, Vaziri ND, Ma SC, Zhao YY. Small molecules from natural products targeting the Wnt/β-catenin pathway as a therapeutic strategy. Biomed Pharmacother. 2019;117:108990. doi:10.1016/j.biopha.2019.108990
  • 34. Paluszczak J, Kleszcz R, Studzińska-Sroka E, Krajka-Kuźniak V. Lichen-derived caperatic acid and physodic acid inhibit Wnt signaling in colorectal cancer cells. Mol Cell Biochem. 2018;441(1-2):109-124. doi:10.1007/s11010-017-3178-7
  • 35. Zhou R, Y ang Y , Park SY , et al. The lichen secondary metabolite atranorin suppresses lung cancer cell motility and tumorigenesis. Sci Rep. 2017;7(1):8136. doi:10.1038/s41598-017-08225-1
  • 36. Majchrzak-Celińska A, Kleszcz R, Studzińska-Sroka E, et al. Lichen Secondary Metabolites Inhibit the Wnt/β-Catenin Pathway in Glioblastoma Cells and Improve the Anticancer Effects of Temozolomide. Cells. 2022;11(7):1084. doi:10.3390/cells11071084
  • 37. Dou H, Shen R, Tao J, et al. Curcumin Suppresses the Colon Cancer Proliferation by Inhibiting Wnt/β-Catenin Pathways via miR-130a. Front Pharmacol. 2017;8. doi:10.3389/fphar.2017.00877
  • 38. Kim JH, Kim YH, Song GY, et al. Ursolic acid and its natural derivative corosolic acid suppress the proliferation of APC-mutated colon cancer cells through promotion of β- catenin degradation. Food Chem Toxicol. 2014;67:87-95. doi:10.1016/j.fct.2014.02.019

Vulpinik Asit HeLa Hücrelerinde WNT/β-Catenin Sinyal Yolağını Hedefler

Yıl 2025, Cilt: 18 Sayı: 2, 495 - 504, 31.08.2025
https://doi.org/10.18185/erzifbed.1595902

Öz

Rahim ağzı kanseri kadınlarda en sık görülen kanserlerden biridir. Rahim ağzı kanseri tedavisinde kullanılan mevcut kanser ilaçlarının yan etkileri ve yetersiz tedavi yöntemleri nedeniyle yeni tedavi stratejilerinin geliştirilmesi önem arz etmektedir. Birçok dikkate değer biyolojik aktiviteye sahip doğal bir liken sekonder metaboliti olan vulpinik asit (VA), serviks kanseri HeLa hücre hattında potansiyel anti-kanser moleküler mekanizmasını açıklayan ayrıntılı bir çalışmaya sahip değildir. Önceki çalışmamızda VA'nın HeLa hücrelerinde anti-proliferatif, apoptotik ve anti-göç özellikleri sergilediğini ve VA'nın HeLa hücrelerindeki IC50 dozunun 48 saatte 66,53 µg/mL olarak hesaplandığını bildirmiştik. VA'nın tümörigenez, hücre proliferasyonu, hücre döngüsü düzenlemesi, embriyogenez, metastaz, hücresel farklılaşma, apoptoz ve ilaç direnci gibi çeşitli biyolojik süreçlerde rol oynayan WNT/β-katenin sinyal yolağı üzerindeki etkisi bilinmemektedir. Bu çalışmada, VA'nın IC50 dozu ile tedavi edilen HeLa hücreleri üzerindeki antimigratör etkisini WNT/β-katenin sinyal yolağı üzerinden gösterip göstermediğini aydınlatmayı amaçladık. Özetle, bu çalışma HeLa hücrelerinin göçünün VA tarafından baskılanmasına WNT/β-katenin sinyal yolağının inhibisyonunun aracılık edebileceğini göstermiştir. VA, insan serviks kanserinin tedavisi için doğal bir aktif bileşik adayı olabilir ve WNT/β-katenin sinyal yolağının inhibitör adayları arasında yer alabilir.

Proje Numarası

No funding was received to assist with the preparation of this manuscript.

Kaynakça

  • [1. Mohammadi M, Bagheri L, Badreldin A, et al. Biological Effects of Gyrophoric Acid and Other Lichen Derived Metabolites, on Cell Proliferation, Apoptosis and Cell Signaling pathways. Chem Biol Interact. 2022;351:109768. doi:10.1016/j.cbi.2021.109768
  • 2. Solárová Z, Liskova A, Samec M, Kubatka P, Büsselberg D, Solár P. Anticancer Potential of Lichens’ Secondary Metabolites. Biomolecules. 2020;10(1):87. doi:10.3390/biom10010087
  • 3. Cardile V, Graziano ACE, Avola R, Piovano M, Russo A. Potential anticancer activity of lichen secondary metabolite physodic acid. Chem Biol Interact. 2017;263:36-45. doi:10.1016/j.cbi.2016.12.007
  • 4. Goga M, Elečko J, Marcinčinová M, Ručová D, Bačkorová M, Bačkor M. Lichen Metabolites: An Overview of Some Secondary Metabolites and Their Biological Potential. In: ; 2018:1-36. doi:10.1007/978-3-319-76887-8_57-1
  • 5. Kalın ŞN, Altay A, Budak H. Inhibition of thioredoxin reductase 1 by vulpinic acid suppresses the proliferation and migration of human breast carcinoma. Life Sci. 2022;310:121093. doi:10.1016/j.lfs.2022.121093
  • 6. Yi SA, Nam KH, Kim S, et al. Vulpinic Acid Controls Stem Cell Fate toward Osteogenesis and Adipogenesis. Genes (Basel). 2019;11(1):18. doi:10.3390/genes11010018
  • 7. Sulukoğlu EK, Günaydın Ş, Kalın ŞN, Altay A, Budak H. Diffractaic acid exerts anti- cancer effects on hepatocellular carcinoma HepG2 cells by inducing apoptosis and suppressing migration through targeting thioredoxin reductase 1. Naunyn Schmiedebergs Arch Pharmacol. 2024;397(8):5745-5755. doi:10.1007/s00210-024- 02980-5
  • 8. Piroozmand A, Mostafavi Zadeh SM, Madani A, et al. The Association of High Risk Human Papillomaviruses in Patients With Cervical Cancer: An Evidence Based Study on Patients With Squamous Cell Dysplasia or Carcinoma for Evaluation of 23 Human Papilloma Virus Genotypes. Jundishapur J Microbiol. 2016;9(4). doi:10.5812/jjm.32728
  • 9. Alharbi KS, Almalki WH, Alzarea SI, et al. A narrative review on the biology of piezo1 with platelet-rich plasma in cardiac cell regeneration. Chem Biol Interact. 2022;363:110011. doi:10.1016/J.CBI.2022.110011
  • 10. Alharbi H, Alshehri AS, Ahmad M, Guo WW. Promising anti- cervical carcinoma and inflammatory agent, Resveratrol targets poly (ADP-ribose) polymerase 1 (PARP-1) induced premature ovarian failure with a potent enzymatic modulatory activity. J Reprod Immunol. 2021;144:103272. doi:10.1016/j.jri.2021.103272
  • 11. Liu J, Xiao Q, Xiao J, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7(1):3. doi:10.1038/s41392-021-00762-6
  • 12. Stamos JL, Chu MLH, Enos MD, Shah N, Weis WI. Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6. Elife. 2014;3. doi:10.7554/eLife.01998
  • 13. Liu C, Li Y, Semenov M, et al. Control of β-Catenin Phosphorylation/Degradation by a Dual-Kinase Mechanism. Cell. 2002;108(6):837-847. doi:10.1016/S0092- 8674(02)00685-2
  • 14. Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13(1):165. doi:10.1186/s13045-020-00990-3
  • 15. Jung YS, Park JI. Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Exp Mol Med. 2020;52(2):183-191. doi:10.1038/s12276-020-0380-6
  • 16. Lawrey JD. Biological Role of Lichen Substances. Bryologist. 1986;89(2):111. doi:10.2307/3242751
  • 17. Kowalski M, Hausner G, Piercey-Normore MD. Bioactivity of secondary metabolites and thallus extracts from lichen fungi. Mycoscience. 2011;52(6):413-418. doi:10.1007/S10267-011-0118-3
  • 18. Varol M, Türk A, Candan M, Tay T, Koparal AT. Photoprotective Activity of Vulpinic and Gyrophoric Acids Toward Ultraviolet B-Induced Damage in Human Keratinocytes. Phyther Res. 2016;30(1):9-15. doi:10.1002/ptr.5493
  • 19. Budak B, Kalın ŞN, Yapça ÖE. Antiproliferative, antimigratory, and apoptotic effects of diffractaic and vulpinic acids as thioredoxin reductase 1 inhibitors on cervical cancer. Naunyn Schmiedebergs Arch Pharmacol. 2024;397(3):1525-1535. doi:10.1007/s00210-023-02698-w
  • 20. Karağaç MS, Yeşilkent EN, Kizir D, et al. Esculetin improves inflammation of the kidney via gene expression against doxorubicin-induced nephrotoxicity in rats: In vivo and in silico studies. Food Biosci. 2024;62:105159. doi:10.1016/j.fbio.2024.105159
  • 21. Kizir D, Karaman M, Demir Y, Ceylan H. Effect of tannic acid on doxorubicin‐induced cellular stress: Expression levels of heat shock genes in rat spleen. Biotechnol Appl Biochem. 2024;71(6):1339-1345. doi:10.1002/bab.2633
  • 22. Kalın ŞN, Altay A, Budak H. Effect of evernic acid on human breast cancer MCF‐7 and MDA‐MB‐453 cell lines via thioredoxin reductase 1: A molecular approach. J Appl Toxicol. 2023;43(8):1148-1158. doi:10.1002/jat.4451
  • 23. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real- Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25(4):402-408. doi:10.1006/meth.2001.1262
  • 24. Zhou Y, Huang Y, Cao X, et al. WNT2 Promotes Cervical Carcinoma Metastasis and Induction of Epithelial-Mesenchymal Transition. Tang CH, ed. PLoS One. 2016;11(8):e0160414. doi:10.1371/journal.pone.0160414
  • 25. Jung YS, Jun S, Lee SH, Sharma A, Park JI. Wnt2 complements Wnt/β-catenin signaling in colorectal cancer. Oncotarget. 2015;6(35):37257-37268. doi:10.18632/oncotarget.6133
  • 26. Yu F, Yu C, Li F, et al. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 2021;6(1):307. doi:10.1038/s41392-021-00701-5
  • 27. Thadhani VM, Karunaratne V. Potential of Lichen Compounds as Antidiabetic Agents with Antioxidative Properties: A Review. Sun X, ed. Oxid Med Cell Longev.2017;2017(1). doi:10.1155/2017/2079697
  • 28. Unterleuthner D, Neuhold P, Schwarz K, et al. Cancer-associated fibroblast-derived WNT2 increases tumor angiogenesis in colon cancer. Angiogenesis. 2020;23(2):159- 177. doi:10.1007/s10456-019-09688-8
  • 29. Huguet EL, McMahon JA, McMahon AP, Bicknell R, Harris AL. Differential expression of human Wnt genes 2, 3, 4, and 7B in human breast cell lines and normal and disease states of human breast tissue. Cancer Res. 1994;54(10):2615-2621. http://www.ncbi.nlm.nih.gov/pubmed/8168088
  • 30. Jiang H, Li Q, He C, et al. Activation of the Wnt pathway through Wnt2 promotes metastasis in pancreatic cancer. Am J Cancer Res. 2014;4(5):537-544. http://www.ncbi.nlm.nih.gov/pubmed/25232495
  • 31. Qiu L, Sun Y, Ning H, Chen G, Zhao W, Gao Y. The scaffold protein AXIN1: gene ontology, signal network, and physiological function. Cell Commun Signal. 2024;22(1):77. doi:10.1186/s12964-024-01482-4
  • 32. Yan M, Li G, An J. Discovery of small molecule inhibitors of the Wnt/β-catenin signaling pathway by targeting β-catenin/Tcf4 interactions. Exp Biol Med. 2017;242(11):1185-1197. doi:10.1177/1535370217708198
  • 33. Liu D, Chen L, Zhao H, Vaziri ND, Ma SC, Zhao YY. Small molecules from natural products targeting the Wnt/β-catenin pathway as a therapeutic strategy. Biomed Pharmacother. 2019;117:108990. doi:10.1016/j.biopha.2019.108990
  • 34. Paluszczak J, Kleszcz R, Studzińska-Sroka E, Krajka-Kuźniak V. Lichen-derived caperatic acid and physodic acid inhibit Wnt signaling in colorectal cancer cells. Mol Cell Biochem. 2018;441(1-2):109-124. doi:10.1007/s11010-017-3178-7
  • 35. Zhou R, Y ang Y , Park SY , et al. The lichen secondary metabolite atranorin suppresses lung cancer cell motility and tumorigenesis. Sci Rep. 2017;7(1):8136. doi:10.1038/s41598-017-08225-1
  • 36. Majchrzak-Celińska A, Kleszcz R, Studzińska-Sroka E, et al. Lichen Secondary Metabolites Inhibit the Wnt/β-Catenin Pathway in Glioblastoma Cells and Improve the Anticancer Effects of Temozolomide. Cells. 2022;11(7):1084. doi:10.3390/cells11071084
  • 37. Dou H, Shen R, Tao J, et al. Curcumin Suppresses the Colon Cancer Proliferation by Inhibiting Wnt/β-Catenin Pathways via miR-130a. Front Pharmacol. 2017;8. doi:10.3389/fphar.2017.00877
  • 38. Kim JH, Kim YH, Song GY, et al. Ursolic acid and its natural derivative corosolic acid suppress the proliferation of APC-mutated colon cancer cells through promotion of β- catenin degradation. Food Chem Toxicol. 2014;67:87-95. doi:10.1016/j.fct.2014.02.019
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tıbbi Farmakoloji
Bölüm Makaleler
Yazarlar

Şeyda Nur Kalin 0000-0002-2594-2489

Proje Numarası No funding was received to assist with the preparation of this manuscript.
Erken Görünüm Tarihi 14 Ağustos 2025
Yayımlanma Tarihi 31 Ağustos 2025
Gönderilme Tarihi 3 Aralık 2024
Kabul Tarihi 23 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 2

Kaynak Göster

APA Kalin, Ş. N. (2025). Vulpinic Acid Targets WNT/β-Catenin Signalling Pathway in HeLa Cells. Erzincan University Journal of Science and Technology, 18(2), 495-504. https://doi.org/10.18185/erzifbed.1595902