Araştırma Makalesi
BibTex RIS Kaynak Göster

İnterply ve İntraply Karbon Fiber Hibridizasyonlu Aramid Fiber Kompozit Yapıştırma Bağlantılarının Sayısal Modal Analizi

Yıl 2025, Cilt: 18 Sayı: 2, 618 - 630, 31.08.2025
https://doi.org/10.18185/erzifbed.1659089

Öz

Yapıştırma bağlantıları birçok endüstriyel alanda makine elemanı olarak kullanılmaktadır. Bu bağlantılar, quasi-statik kuvvetlere maruz kalabileceği gibi dinamik yükler altında da görev yaparlar. Bu nedenle bu bağlantıların dinamik özelliklerinin tespit edilmesi, yapının dayanımı ve çalışma ömrü açısından bir hayli kritiktir. Bu çalışmada, daha önce üretilen ve mekanik olarak karakterize edilen aramid ve karbon elyaf takviyeli kompozitler adherend elemanı olarak yapıştırma bağlantılarında modellenmiş ve interply/intraply hibrtileşmenin yapıştırma bağlantılarının titreşim davranışı üzerindeki etkileri sonlu elemanlar analizi ile incelenmiştir. Bu kapsamda, bağlantıların üç ayrı sınır koşulunda (free-free, clamped-free ve clamped-clamped) birinci doğal frekans ve mode shape leri elde edilmiştir. Buna göre, özellikle clamped sınır şartının intraply adherentli bağlantıların birinci doğal frekansları üzerinde majör etkileri olduğu anlaşılmıştır.

Kaynakça

  • [1] Hulagu, B., Acar, V., Aydin, M. R., Aydın, O. A., Gok, S., Unal, H. Y., Pekbey, Y and Akbulut, H. (2021) Experimental modal analysis of graphene nanoparticle reinforced adhesively bonded double strap joints. The Journal of Adhesion, 97(12), 1107-1135.
  • [2] Hulagu, B., Unal, H. Y., Acar, V., Khan, Tayyab., Aydin, M. R., Aydin, O. A., Gok, S., Pekbey, Y., Akbulut, H. (2021) Low-velocity impact and bending response of graphene nanoparticle-reinforced adhesively bonded double strap joints. Journal of Adhesion Science and Technology, 35(22), 2391-2409.
  • [3] Wang, S., Li, Y and Xie Z. (2019) Free vibration analysis of adhesively bonded lap joints through layerwise finite element. Composite Structures, 223, 110943.
  • [4] Akkasali, N. K and Biswas, S. (2024) Influence of reinforcement on vibration control in adhesively bonded single lap joints: a numerical and experimental validation. Engineering Research Express, 6, 03558.
  • [5] Marchione, F. (2020) Investigation of Vibration Modes of Double-lap Adhesive Joints: Effect of Slot. International Journal of Engineering, 33(10), 1917-1923.
  • [6] Hulagu, B., Acar, V., Cakir, Ferit and Akbulut, H. (2025) Numerical analysis of modal and flexural behavior of nanocomposite adhesively bonded joints. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 47, 154.
  • [7] Du, Y and Shi, L. (2014) Effect of vibration fatigue on modal properties of single lap adhesive joints. International Journal of Adhesion & Adhesives, 53, 72-79.
  • [8] Kemiklioglu, U and Okutan Baba, B. (2019) Vibration Effects on Tensile Properties of Adhesively Bonded Single Lap Joints in Composite Materials. Polymer Composites, 1259.
  • [9] Ingola, S. B and Chatterjee, A. (2010) Vibration analysis of single lap adhesive joint: Experimental and analytical investigation. Journal of Vibration and Control, 17(10), 1547- 1556.
  • [10] Jairaja, R and Naik, G. N. (2020) Strengthening of the adhesive bond using a mixture of adhesives between dissimilar adherends in a single lap joint. Journal of Adhesion Science and Technology, 34(6), 579-598.
  • [11] Jairaja, R and Naik, G. N. (2019) Single and dual adhesive bond strength analysis of single lap joint between dissimilar adherends. International Journal of Adhesion and Adhesives, 92, 142-153.
  • [12] Di Franco, G and Zuccarello B. (2014) Analysis and optimization of hybrid double lap aluminum-GFRP joints. Composite Structures, 116, 682-693.
  • [13] Ramezani, F., Nunes, P. D. P., Carbas, R. J. C., Marques, E. A. S and Da Silva, L. F. M. (2022) The joint strength of hybrid composite joints reinforced with different laminates materials. Journal of Advanced Joining Processes, 5, 100103.
  • [14] He, B and Ge, D. (2017) Dynamic strength of adhesively bonded composite joints with similar and dissimilar assembled adherends. Journal of Reinforced Plastics and Composites, 36(23), 1683-1692.
  • [15] Javaid, U., Ling, C and Cardiff, P. (2020) Mechanical performance of carbon-glass hybrid composite joints in quasi-static tension and tension-tension fatigue. Engineering Failure Analysis, 116, 104730.
  • [16] Erbayrak, E. (2023) Numerical investigation of the Mode I/Mode II fracture behavior of the hybrid composite joints with a hybrid bondline. Journal of Engineering Research, 11, 527- 536.
  • [17] Pinto, A. M. G., Magalhaes, A. G., Campilho, R. D. S. G., De Moura, M. F. S. F and Baptista, A. P. M. (2009) Single-Lap Joints of Similar and Dissimilar Adherends Bonded with an Acrylic Adhesive. The Journal of Adhesion, 85, 351- 376.
  • [18] Erbayrak, E., Eker Gumus, B and Yuncuoglu, E. U. (2023) Experimental study of adhesively bonded joints with dissimilar composite laminates under different loading rates and ambient temperatures. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45, 260.
  • [19] Avendano, R., Carbas, R. J. C., Marques, E. A. S., Da Silva, L. F. M and Fernandes, A. A. (2016) Effect of temperature and strain rate on single lap joints with dissimilar lightweight adherends bonded with an acrylic adhesive. Composite Structures, 152, 34-44.
  • [20] Sajip, Z., Karuppanan, S., Kee, K. E., Sallih, N and Shah, S. Z. H. (2021) Carbon/basalt hybrid composite bolted joint for improved bearing performance and cost efficiency. Composite Structures, 275, 114427.
  • [21] Erbayrak, E. (2022) Investigations of low-velocity impact behaviour of single lap joints having dissimilar hybrid composite adherends through cohesive zone model approach. Journal of Adhesion Science and Technology, 36(5), 545-565.
  • [22] Aydin, M. R., Acar, V., Cakir, F., Gündogdu, O and Akbulut, H. (2022) Comparative dynamic analysis of carbon, aramid and glass fiber reinforced interply and intraply hybrid composites. Composite Structures, 291, 115595.
  • [23] ASTM D3039/D3039M-14, 2013. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International, West Conshohocken, PA, United States.
  • [24] Solidworks 2017 SP5.0 Solid Modeling Computer-Aided Design Software. Release 2017, Dassault Systèmes SE, Vélizy-Villacoublay, France.
  • [25] ANSYS Workbench 19.0 (2017) Finite Element Software, Release 2017, ANSYS, Inc., Canonsburg, PA.
  • [26] Rao, S.S. (2007) Vibration of Continuous Systems. John Wiley & Sons, Inc., Hoboken, New Jersey.
  • [27] Apalak, Z.G., Ekici, R., Yıldırım, M., Apalak, M.K. (2014) Free vibration analysis of an adhesively bonded functionally graded double containment cantilever joint. Journal of Adhesion Science and Technology, 28(12), 1117-1139.
  • [28] Ramalho, L.D.C., Sánchez-Arce, I.J., Gonçalves, D.C., Campilho, R.D.S.G., Belinha, J. (2023) Free vibration parametric study of a single lap joint using the Radial Point Interpolation Method. Composite Structures, 308, 116668.

Numerical Modal Analysis of Adhesively Bonded Joints of Aramid Fiber Composites with Interply and Intraply Carbon Fiber Hybridization

Yıl 2025, Cilt: 18 Sayı: 2, 618 - 630, 31.08.2025
https://doi.org/10.18185/erzifbed.1659089

Öz

Adhesively bonded joints are widely employed as components in a wide range of industrial applications. These joints can be subjected to quasi-static forces as well as dynamic loads. Therefore, the determination of the dynamic properties of these joints is very critical in terms of the strength and service life of the structure. In this study, previously manufactured and mechanically characterised aramid and carbon fiber reinforced composites were modelled as adherend components in joints and the effects of interply/intraply hybridization on the vibration behaviour of joints were investigated by finite element analysis (FEA). The first natural frequencies and mode shapes of the joints were obtained for three different boundary conditions (free-free, clamped-free and clamped-clamped). It was observed that the clamped boundary condition had a significant effect on the first natural frequencies of joints with intraply adhrends.

Kaynakça

  • [1] Hulagu, B., Acar, V., Aydin, M. R., Aydın, O. A., Gok, S., Unal, H. Y., Pekbey, Y and Akbulut, H. (2021) Experimental modal analysis of graphene nanoparticle reinforced adhesively bonded double strap joints. The Journal of Adhesion, 97(12), 1107-1135.
  • [2] Hulagu, B., Unal, H. Y., Acar, V., Khan, Tayyab., Aydin, M. R., Aydin, O. A., Gok, S., Pekbey, Y., Akbulut, H. (2021) Low-velocity impact and bending response of graphene nanoparticle-reinforced adhesively bonded double strap joints. Journal of Adhesion Science and Technology, 35(22), 2391-2409.
  • [3] Wang, S., Li, Y and Xie Z. (2019) Free vibration analysis of adhesively bonded lap joints through layerwise finite element. Composite Structures, 223, 110943.
  • [4] Akkasali, N. K and Biswas, S. (2024) Influence of reinforcement on vibration control in adhesively bonded single lap joints: a numerical and experimental validation. Engineering Research Express, 6, 03558.
  • [5] Marchione, F. (2020) Investigation of Vibration Modes of Double-lap Adhesive Joints: Effect of Slot. International Journal of Engineering, 33(10), 1917-1923.
  • [6] Hulagu, B., Acar, V., Cakir, Ferit and Akbulut, H. (2025) Numerical analysis of modal and flexural behavior of nanocomposite adhesively bonded joints. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 47, 154.
  • [7] Du, Y and Shi, L. (2014) Effect of vibration fatigue on modal properties of single lap adhesive joints. International Journal of Adhesion & Adhesives, 53, 72-79.
  • [8] Kemiklioglu, U and Okutan Baba, B. (2019) Vibration Effects on Tensile Properties of Adhesively Bonded Single Lap Joints in Composite Materials. Polymer Composites, 1259.
  • [9] Ingola, S. B and Chatterjee, A. (2010) Vibration analysis of single lap adhesive joint: Experimental and analytical investigation. Journal of Vibration and Control, 17(10), 1547- 1556.
  • [10] Jairaja, R and Naik, G. N. (2020) Strengthening of the adhesive bond using a mixture of adhesives between dissimilar adherends in a single lap joint. Journal of Adhesion Science and Technology, 34(6), 579-598.
  • [11] Jairaja, R and Naik, G. N. (2019) Single and dual adhesive bond strength analysis of single lap joint between dissimilar adherends. International Journal of Adhesion and Adhesives, 92, 142-153.
  • [12] Di Franco, G and Zuccarello B. (2014) Analysis and optimization of hybrid double lap aluminum-GFRP joints. Composite Structures, 116, 682-693.
  • [13] Ramezani, F., Nunes, P. D. P., Carbas, R. J. C., Marques, E. A. S and Da Silva, L. F. M. (2022) The joint strength of hybrid composite joints reinforced with different laminates materials. Journal of Advanced Joining Processes, 5, 100103.
  • [14] He, B and Ge, D. (2017) Dynamic strength of adhesively bonded composite joints with similar and dissimilar assembled adherends. Journal of Reinforced Plastics and Composites, 36(23), 1683-1692.
  • [15] Javaid, U., Ling, C and Cardiff, P. (2020) Mechanical performance of carbon-glass hybrid composite joints in quasi-static tension and tension-tension fatigue. Engineering Failure Analysis, 116, 104730.
  • [16] Erbayrak, E. (2023) Numerical investigation of the Mode I/Mode II fracture behavior of the hybrid composite joints with a hybrid bondline. Journal of Engineering Research, 11, 527- 536.
  • [17] Pinto, A. M. G., Magalhaes, A. G., Campilho, R. D. S. G., De Moura, M. F. S. F and Baptista, A. P. M. (2009) Single-Lap Joints of Similar and Dissimilar Adherends Bonded with an Acrylic Adhesive. The Journal of Adhesion, 85, 351- 376.
  • [18] Erbayrak, E., Eker Gumus, B and Yuncuoglu, E. U. (2023) Experimental study of adhesively bonded joints with dissimilar composite laminates under different loading rates and ambient temperatures. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45, 260.
  • [19] Avendano, R., Carbas, R. J. C., Marques, E. A. S., Da Silva, L. F. M and Fernandes, A. A. (2016) Effect of temperature and strain rate on single lap joints with dissimilar lightweight adherends bonded with an acrylic adhesive. Composite Structures, 152, 34-44.
  • [20] Sajip, Z., Karuppanan, S., Kee, K. E., Sallih, N and Shah, S. Z. H. (2021) Carbon/basalt hybrid composite bolted joint for improved bearing performance and cost efficiency. Composite Structures, 275, 114427.
  • [21] Erbayrak, E. (2022) Investigations of low-velocity impact behaviour of single lap joints having dissimilar hybrid composite adherends through cohesive zone model approach. Journal of Adhesion Science and Technology, 36(5), 545-565.
  • [22] Aydin, M. R., Acar, V., Cakir, F., Gündogdu, O and Akbulut, H. (2022) Comparative dynamic analysis of carbon, aramid and glass fiber reinforced interply and intraply hybrid composites. Composite Structures, 291, 115595.
  • [23] ASTM D3039/D3039M-14, 2013. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International, West Conshohocken, PA, United States.
  • [24] Solidworks 2017 SP5.0 Solid Modeling Computer-Aided Design Software. Release 2017, Dassault Systèmes SE, Vélizy-Villacoublay, France.
  • [25] ANSYS Workbench 19.0 (2017) Finite Element Software, Release 2017, ANSYS, Inc., Canonsburg, PA.
  • [26] Rao, S.S. (2007) Vibration of Continuous Systems. John Wiley & Sons, Inc., Hoboken, New Jersey.
  • [27] Apalak, Z.G., Ekici, R., Yıldırım, M., Apalak, M.K. (2014) Free vibration analysis of an adhesively bonded functionally graded double containment cantilever joint. Journal of Adhesion Science and Technology, 28(12), 1117-1139.
  • [28] Ramalho, L.D.C., Sánchez-Arce, I.J., Gonçalves, D.C., Campilho, R.D.S.G., Belinha, J. (2023) Free vibration parametric study of a single lap joint using the Radial Point Interpolation Method. Composite Structures, 308, 116668.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Dinamikler, Titreşim ve Titreşim Kontrolü, Katı Mekanik, Makine Mühendisliğinde Sayısal Yöntemler
Bölüm Makaleler
Yazarlar

Volkan Acar 0000-0001-7412-301X

Erken Görünüm Tarihi 14 Ağustos 2025
Yayımlanma Tarihi 31 Ağustos 2025
Gönderilme Tarihi 16 Mart 2025
Kabul Tarihi 15 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 2

Kaynak Göster

APA Acar, V. (2025). Numerical Modal Analysis of Adhesively Bonded Joints of Aramid Fiber Composites with Interply and Intraply Carbon Fiber Hybridization. Erzincan University Journal of Science and Technology, 18(2), 618-630. https://doi.org/10.18185/erzifbed.1659089