Araştırma Makalesi
BibTex RIS Kaynak Göster

CP-Titanyum ve CoCrMo Alaşımı Üzerine Katodik Ark Biriktirme Yöntemi ile Kaplanmış Filmlerin Tribolojik Özellikleri

Yıl 2025, Cilt: 18 Sayı: 2, 451 - 463, 31.08.2025
https://doi.org/10.18185/erzifbed.1679453

Öz

Biyomalzemelerin yük taşıyan implantlarda tribolojik özelliklerinin iyleştirilmesi oldukça önemlidir. Bu çalışmada iki farklı türdeki biyomalzeme üzerine (CP-Ti ve CoCrMo alaşımı) CAPVD yöntemiyle yüzeylere biriktirilen TiN ve ZrN filmlerin kuru aşınma şartlarında, 1N ve 3N'luk yük altında tribolojik özelliklerinin kıyaslanması yapılmıştır. Ayrıca yüzeyde biriktirilen TiN ve ZrN filmlerinin CP-Ti ve CoCrMo malzemesi üzerindeki mikroyapısal ve mekanik özellikleri incelenmiştir. TiN ve ZrN kaplı CP-Ti ve CoCrMo malzemelerinin kristal yapısı, elementel bileşimi ve yüzey morfolojisi sırasıyla XRD, SEM ve SEM-EDS analizleri kullanılarak belirlenmiştir. 1N’luk yük altında yapılan aşınma testi sonrası kuru ortamda yapılan test sonuçlarına göre en düşük sürtünme katsayısı yaklaşık 0,35 değerinde işlemsiz CoCrMo numunesinde görülürken, en yüksek sürtünme katsayısı ise 0,55 değerinde ZrNkaplı CoCrMo numunesinde bulunmuştur. 3N’luk yük altında en düşük aşınma oranı ZrN/CCM numunesinde 0,38x10-6 mm3/Nm iken, en yüksek aşınma oranı değeri işlemsiz Ti numunesinde 2,10 x10-6 mm’dir. Sonuç olarak, TiN ve ZrN kaplı CP-Ti ve CoCrMo numunelerin mikrosertlik değerleri ve aşınma direncinin arttığı belirlenmiştir.

Proje Numarası

-

Kaynakça

  • 1. Bandyopadhyay, A., Mitra, I., Goodman, S. B., Kumar, M., & Bose, S. (2023). Improving biocompatibility for next generation of metallic implants. Progress in materials science, 133, 101053.
  • 2. Anene, F. A., Aiza Jaafar, C. N., Zainol, I., Azmah Hanim, M. A., & Suraya, M. T. (2021). Biomedical materials: A review of titanium based alloys. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(19), 3792-3805.
  • 3. Aslan Çakır, M., Yetim, T., Yetim, A. F., & Çelik, A. (2024). Superamphiphobic TiO2 film by sol–gel dip coating method on commercial pure titanium. Journal of Materials Engineering and Performance, 33(3), 1472-1484.
  • 4. AbuAlia, M., Fullam, S., Cinotti, F., Manninen, N., & Wimmer, M. A. (2024). Titanium Nitride Coatings on CoCrMo and Ti6Al4V Alloys: Effects on Wear and Ion Release. Lubricants, 12(3), 96.
  • 5. Wang, S., Liu, Y., Zhang, C., Liao, Z., & Liu, W. (2014). The improvement of wettability, biotribological behavior and corrosion resistance of titanium alloy pretreated by thermal oxidation. Tribology International, 79, 174-182.
  • 6. Çakır, M. A. Microstructural and Tribological Properties of ZrO2 Film Grown by DC Magnetron Sputtering Technique. Gazi University Journal of Science Part C: Design and Technology, 12(3), 675-683.
  • 7. Acimert, Ö. B., Okur, B. B., Dayauç, A. K., Küçükömeroğlu, T., & Kanca, Y. (2024). Structural, Mechanical and Tribological Properties of Hydroxiapatite Reinforced Ti13Nb13Zr/HA Composite Produced by Friction Stir Process (FSP). Metallurgical and Materials Transactions B, 55(4), 2739-2749.
  • 8. Jakovljević, S., Alar, V., & Ivanković, A. (2017). Electrochemical behaviour of PACVD TiN-coated CoCrMo medical alloy. Metals, 7(7), 231.
  • 9. Aliofkhazraei, M., & Ali, N. 7.04-PVD Technology in Fabrication of Micro-and Nanostructured Coatings”, Editor (s): Hashmi, S., Batalha, GF, Van Tyne, CJ, Yilbas, B. Comprehensive Materials Processing.
  • 10. Valleti, K., & Miryalkar, P. (2023). Efficacy of TiCrN/DLC coatings for service life enhancement of stamping dies. Vacuum, 217, 112534.
  • 11. Yim, S. L. (2006). Optimization of titanium nitride and chromium nitride PVD coating process for toolings.
  • 12. Kovacı, H., Baran, Ö., Bayrak, Ö., Yetim, A. F., & Çelik, A. (2017). Influence of plasma nitriding treatment on the adhesion of DLC films deposited on AISI 4140 steel by PVD magnetron sputtering. Journal of adhesion science and Technology, 31(18), 2015-2027.
  • 13. Bolton, J., & Hu, X. (2002). In vitro corrosion testing of PVD coatings applied to a surgical grade Co–Cr–Mo alloy. Journal of Materials Science: Materials in Medicine, 13(6), 567-574.
  • 14. Türkan, U., Öztürk, O., & Eroğlu, A. E. (2006). Metal ion release from TiN coated CoCrMo orthopedic implant material. Surface and Coatings Technology, 200(16-17), 5020-5027.
  • 15. AbuAlia, M., Fullam, S., Cinotti, F., Manninen, N., & Wimmer, M. A. (2024). Titanium Nitride Coatings on CoCrMo and Ti6Al4V Alloys: Effects on Wear and Ion Release. Lubricants, 12(3), 96.
  • 16. Lai, F. M., & Chang, T. C. (2024). Development of Physical Vapor Deposition Technique and Testing on Ceramics and CoCrMo Alloys. Sensors & Materials, 36.
  • 17. Corona-Gomez, J., Sandhi, K. K., & Yang, Q. (2022). Wear and corrosion behaviour of nanocrystalline TaN, ZrN, and TaZrN coatings deposited on biomedical grade CoCrMo alloy. Journal of the Mechanical Behavior of Biomedical Materials, 130, 105228.
  • 18. Zin, V., Montagner, F., Deambrosis, S. M., Miorin, E., Comisso, N., Rancan, M., ... & Mortalò, C. (2025). High power impulse magnetron sputtering plasma nitriding of biomedical grade CoCrMo alloy. Materials & Design, 252, 113802.
  • 19. Ul-Hamid, A. (2020). Microstructure, properties and applications of Zr-carbide, Zr-nitride and Zr-carbonitride coatings: a review. Materials Advances, 1(5), 1012-1037.
  • 20. Sert, Y., Kahramanzade, H., & Küçükömeroğlu, T. (2022). ZrN İnce Film Kaplamasının 1.2379 Soğuk İş Takım Çeliğindeki Aşınma Özelliğine Etkisinin İncelenmesi. Avrupa Bilim ve Teknoloji Dergisi, (36), 1-5.
  • 21. Li, X., Dong, M., Jiang, D., Li, S., & Shang, Y. (2020). The effect of surface roughness on normal restitution coefficient, adhesion force and friction coefficient of the particle-wall collision. Powder Technology, 362, 17-25.
  • 22. Lakovakis, E., Avcu, E., Roy, M. J., Gee, M., & Matthews, A. (2021). Dry sliding wear behaviour of additive manufactured CrC-rich WC-Co cemented carbides. Wear, 486, 204127.
  • 23. Çakır, M. A., & Köseoğlu, B. (2023). Investigation of the structural, tribological, and electrochemical properties of nitrided and boronized AISI 316L stainless steel. Transactions of the Indian Institute of Metals, 76(6), 1517-1533.

Tribological Properties of Films Coated on CP-Titanium and CoCrMo Alloy by Cathodic Arc Deposition Method

Yıl 2025, Cilt: 18 Sayı: 2, 451 - 463, 31.08.2025
https://doi.org/10.18185/erzifbed.1679453

Öz

The improvement of tribological properties of biomaterials in load-bearing implants is very important. In this study, the tribological properties of TiN and ZrN films deposited on surfaces by CA-PVD method on two different types of biomaterials (CP-Ti and CoCrMo alloy) were compared under dry wear conditions and 1N and 3 N loads. In addition, the microstructural and mechanical properties of TiN and ZrN films deposited on the surface on CP-Ti and CoCrMo materials were investigated. The crystal structure, elemental composition and surface morphology of TiN and ZrN coated CP-Ti and CoCrMo materials were determined using XRD, SEM and SEM-EDS analyses, respectively. According to the test results conducted in a dry environment after the wear test under 1N load, the lowest friction coefficient was found in the untreated CoCrMo sample at approximately 0.35, while the highest friction coefficient was found in the ZrN-coated CoCrMo sample at 0.55. While the lowest wear rate under 3N load was 0.38x10-6 mm3/Nm in the ZrN/CCM sample, the highest wear rate was 2.10x10-6 mm3/Nm in the untreated Ti sample. As a result, it was determined that the microhardness values and wear resistance of the TiN and ZrN-coated CP-Ti and CoCrMo samples increased.

Etik Beyan

-

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • 1. Bandyopadhyay, A., Mitra, I., Goodman, S. B., Kumar, M., & Bose, S. (2023). Improving biocompatibility for next generation of metallic implants. Progress in materials science, 133, 101053.
  • 2. Anene, F. A., Aiza Jaafar, C. N., Zainol, I., Azmah Hanim, M. A., & Suraya, M. T. (2021). Biomedical materials: A review of titanium based alloys. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(19), 3792-3805.
  • 3. Aslan Çakır, M., Yetim, T., Yetim, A. F., & Çelik, A. (2024). Superamphiphobic TiO2 film by sol–gel dip coating method on commercial pure titanium. Journal of Materials Engineering and Performance, 33(3), 1472-1484.
  • 4. AbuAlia, M., Fullam, S., Cinotti, F., Manninen, N., & Wimmer, M. A. (2024). Titanium Nitride Coatings on CoCrMo and Ti6Al4V Alloys: Effects on Wear and Ion Release. Lubricants, 12(3), 96.
  • 5. Wang, S., Liu, Y., Zhang, C., Liao, Z., & Liu, W. (2014). The improvement of wettability, biotribological behavior and corrosion resistance of titanium alloy pretreated by thermal oxidation. Tribology International, 79, 174-182.
  • 6. Çakır, M. A. Microstructural and Tribological Properties of ZrO2 Film Grown by DC Magnetron Sputtering Technique. Gazi University Journal of Science Part C: Design and Technology, 12(3), 675-683.
  • 7. Acimert, Ö. B., Okur, B. B., Dayauç, A. K., Küçükömeroğlu, T., & Kanca, Y. (2024). Structural, Mechanical and Tribological Properties of Hydroxiapatite Reinforced Ti13Nb13Zr/HA Composite Produced by Friction Stir Process (FSP). Metallurgical and Materials Transactions B, 55(4), 2739-2749.
  • 8. Jakovljević, S., Alar, V., & Ivanković, A. (2017). Electrochemical behaviour of PACVD TiN-coated CoCrMo medical alloy. Metals, 7(7), 231.
  • 9. Aliofkhazraei, M., & Ali, N. 7.04-PVD Technology in Fabrication of Micro-and Nanostructured Coatings”, Editor (s): Hashmi, S., Batalha, GF, Van Tyne, CJ, Yilbas, B. Comprehensive Materials Processing.
  • 10. Valleti, K., & Miryalkar, P. (2023). Efficacy of TiCrN/DLC coatings for service life enhancement of stamping dies. Vacuum, 217, 112534.
  • 11. Yim, S. L. (2006). Optimization of titanium nitride and chromium nitride PVD coating process for toolings.
  • 12. Kovacı, H., Baran, Ö., Bayrak, Ö., Yetim, A. F., & Çelik, A. (2017). Influence of plasma nitriding treatment on the adhesion of DLC films deposited on AISI 4140 steel by PVD magnetron sputtering. Journal of adhesion science and Technology, 31(18), 2015-2027.
  • 13. Bolton, J., & Hu, X. (2002). In vitro corrosion testing of PVD coatings applied to a surgical grade Co–Cr–Mo alloy. Journal of Materials Science: Materials in Medicine, 13(6), 567-574.
  • 14. Türkan, U., Öztürk, O., & Eroğlu, A. E. (2006). Metal ion release from TiN coated CoCrMo orthopedic implant material. Surface and Coatings Technology, 200(16-17), 5020-5027.
  • 15. AbuAlia, M., Fullam, S., Cinotti, F., Manninen, N., & Wimmer, M. A. (2024). Titanium Nitride Coatings on CoCrMo and Ti6Al4V Alloys: Effects on Wear and Ion Release. Lubricants, 12(3), 96.
  • 16. Lai, F. M., & Chang, T. C. (2024). Development of Physical Vapor Deposition Technique and Testing on Ceramics and CoCrMo Alloys. Sensors & Materials, 36.
  • 17. Corona-Gomez, J., Sandhi, K. K., & Yang, Q. (2022). Wear and corrosion behaviour of nanocrystalline TaN, ZrN, and TaZrN coatings deposited on biomedical grade CoCrMo alloy. Journal of the Mechanical Behavior of Biomedical Materials, 130, 105228.
  • 18. Zin, V., Montagner, F., Deambrosis, S. M., Miorin, E., Comisso, N., Rancan, M., ... & Mortalò, C. (2025). High power impulse magnetron sputtering plasma nitriding of biomedical grade CoCrMo alloy. Materials & Design, 252, 113802.
  • 19. Ul-Hamid, A. (2020). Microstructure, properties and applications of Zr-carbide, Zr-nitride and Zr-carbonitride coatings: a review. Materials Advances, 1(5), 1012-1037.
  • 20. Sert, Y., Kahramanzade, H., & Küçükömeroğlu, T. (2022). ZrN İnce Film Kaplamasının 1.2379 Soğuk İş Takım Çeliğindeki Aşınma Özelliğine Etkisinin İncelenmesi. Avrupa Bilim ve Teknoloji Dergisi, (36), 1-5.
  • 21. Li, X., Dong, M., Jiang, D., Li, S., & Shang, Y. (2020). The effect of surface roughness on normal restitution coefficient, adhesion force and friction coefficient of the particle-wall collision. Powder Technology, 362, 17-25.
  • 22. Lakovakis, E., Avcu, E., Roy, M. J., Gee, M., & Matthews, A. (2021). Dry sliding wear behaviour of additive manufactured CrC-rich WC-Co cemented carbides. Wear, 486, 204127.
  • 23. Çakır, M. A., & Köseoğlu, B. (2023). Investigation of the structural, tribological, and electrochemical properties of nitrided and boronized AISI 316L stainless steel. Transactions of the Indian Institute of Metals, 76(6), 1517-1533.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Tasarım ve Davranışları, Triboloji
Bölüm Makaleler
Yazarlar

Ömer Faruk Demirbüken Bu kişi benim 0009-0005-6731-0817

Mevra Aslan Çakır 0000-0002-3826-8390

Proje Numarası -
Erken Görünüm Tarihi 14 Ağustos 2025
Yayımlanma Tarihi 31 Ağustos 2025
Gönderilme Tarihi 18 Nisan 2025
Kabul Tarihi 29 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 2

Kaynak Göster

APA Demirbüken, Ö. F., & Aslan Çakır, M. (2025). Tribological Properties of Films Coated on CP-Titanium and CoCrMo Alloy by Cathodic Arc Deposition Method. Erzincan University Journal of Science and Technology, 18(2), 451-463. https://doi.org/10.18185/erzifbed.1679453