Araştırma Makalesi
BibTex RIS Kaynak Göster

Natural Protective Power: Prevention of Biodiesel Oxidation with Tilia platyphyllos

Yıl 2025, Cilt: 18 Sayı: 2, 372 - 390, 31.08.2025
https://doi.org/10.18185/erzifbed.1689819

Öz

Traditional energy sources are incompatible with contemporary environmental sustainability goals, hence renewable and eco-friendly alternatives are more popular. Due to its polyunsaturated fatty acid make up, biodiesel is prone to oxidative breakdown despite its low toxicity, biodegradability, and emissions. This reduces gasoline storage life and engine performance. Tilia platyphyllos extract, a natural phenolic, improved biodiesel-diesel (50% biodiesel + 50% diesel) blends' oxidation resistance in this research. The soxhlet extract was added to the gasoline at 3000 ppm and compared to TBHQ, a synthetic antioxidant. Thermal and chemical characterization methods FT-IR, TGA, and DSC were used to assess antioxidant activity. We tested the extract's ability to eliminate free radicals using DPPH• and ABTS•⁺ assays. The results show that Tilia platyphyllos is a powerful antioxidant that prevents biodiesel-diesel blend oxidative degradation. Biofuel technology might benefit from Tilia platyphyllos.

Etik Beyan

There are no ethical issues regarding the publication of this study.

Teşekkür

I gratefully acknowledge the support of Ondokuz Mayis University Karadeniz Advanced Technology Research and Application Center (KITAM) for providing access to the instrumentation and facilities used for chemical characterizations.

Kaynakça

  • [1] Yaakob, Z., Narayanan B. N., Padikkaparambil S., K S. U. (2014) A review on the oxidation stability of biodiesel. Renewable and Sustainable Energy Reviews, 35, 136–153.
  • [2] Al-Samaraae, R. R., Atabani A. E., Uguz G., Kumar G., Arpa O., Ayanoglu A., Mohammed M. N., Farouk H. (2020) Perspective of safflower (Carthamus tinctorius) as a potential biodiesel feedstock in Turkey: characterization, engine performance and emissions analyses of butanol–biodiesel–diesel blends. Biofuels, 11, 715–731.
  • [3] Romola, C. V. J., Meganaharshini M., Rigby S. P., Moorthy I. G., Kumar R. S., Karthikumar S. (2021) A comprehensive review of the selection of natural and synthetic antioxidants to enhance the oxidative stability of biodiesel. Renewable and Sustainable Energy Reviews, 145, 111109.
  • [4] Godri, K. J., Chhan D., Rais K., Pan K., Wallace J. S. (2019) Biodiesel fuels: a greener diesel? A review from a health perspective. Science of the Total Environment, 688, 1036–1055.
  • [5] Kumar, N. (2017) Oxidative stability of biodiesel: causes, effects and prevention. Fuel, 190, 328–350.
  • [6] Gulcin, İ., Alwasel S. H. (2023) DPPH• radical scavenging assay. Processes, 11.
  • [7] Anwar, M. (2021) Biodiesel feedstocks selection strategies based on economic, technical, and sustainable aspects. Fuel, 283, 119204.
  • [8] Ren, J., Li Z., Li X., Yang L., Bu Z., Wu Y., Li Y., Zhang S., Meng X. (2025) Exploring the mechanisms of the antioxidants BHA, BHT, and TBHQ in hepatotoxicity, nephrotoxicity, and neurotoxicity from the perspective of network toxicology. Foods, 14.
  • [9] Zhou, Y., Ren Q., Shen Y. (2025) Comprehensive review of Tilia L.: phytochemical profiles, edible value, therapeutic potentials, and ecological significance. -, 6867.
  • [10] Phuekvilai, P., Wolff K. (2013) Characterization of microsatellite loci in Tilia platyphyllos (Malvaceae) and cross‐amplification in related species. Applications in Plant Sciences, 1, 4–6.
  • [11] Lykholat, Y., Alekseeva A., Khromykh N., Ivan’ko I., Kharytonov M., Kovalenko I. (2016) Assessment and prediction of viability and metabolic activity of Tilia platyphyllos in arid steppe climate of Ukraine. The Journal “Agriculture and Forestry”, 62, 57–64.
  • [12] Yuan, X., Wang H., Yan L., Huang X., Tang S. (2025) Comparison of key floral components between two Tilia species and among different processing technologies as revealed by widely targeted metabolomic profiling. Journal of the Science of Food and Agriculture.
  • [13] Abramovič, H., Grobin B., Ulrih N. P., Cigić B. (2018) Relevance and standardization of in vitro antioxidant assays: ABTS, DPPH, and Folin–Ciocalteu. Journal of Chemistry, 2018.
  • [14] Pieczykolan, A., Pietrzak W., Nowak R., Pielczyk J., Łamacz K. (2019) Optimization of extraction conditions for determination of tiliroside in Tilia L. flowers using an LC-ESI-MS/MS method. Journal of Analytical Methods in Chemistry, 2019.
  • [15] Selvi, K. Ç. (2020) Investigating the influence of infrared drying method on linden (Tilia platyphyllos Scop.) leaves: kinetics, color, projected area, modeling, total phenolic, and flavonoid content. Plants, 9, 1–17.
  • [16] Siger, A., Antkowiak W., Dwiecki K., Rokosik E., Rudzińska M. (2021) Nutlets of Tilia cordata Mill. and Tilia platyphyllos Scop. – source of bioactive compounds. Food Chemistry, 346, 60–63.
  • [17] Chinou, I. (2012) Assessment report on Tilia cordata Miller, Tilia platyphyllos Scop., Tilia x vulgaris Heyne or their mixtures, Flos. European Medicines Agency/Science Medicines Health, 44.
  • [18] Brand-Williams, W., Cuvelier M. E., Berset C. (1995) Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28, 25–30.
  • [19] Re, R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26, 1231–1237.
  • [20] Floegel, A., Kim D. O., Chung S. J., Koo S. I., Chun O. K. (2011) Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of Food Composition and Analysis, 24, 1043–1048.
  • [21] Piątkowski, M., Janus Ł., Radwan-Pragłowska J., Bogdał D., Matysek D. (2018) Biodegradable, pH-sensitive chitosan beads obtained under microwave radiation for advanced cell culture. Colloids and Surfaces B: Biointerfaces, 164, 324–331.
  • [22] Kędzierska, M., Bańkosz M., Sala K., Dudzik J., Potemski P., Tyliszczak B. (2023) Investigating the effect of the crosslinking factor on the properties of hydrogel materials containing Tilia platyphyllos hydrolate. Molecules, 28.
  • [23] Svec, L. (2015) Optimization of FTIR-ATR spectroscopy for botanical authentication of unifloral honey types and melissopalynological data prediction. -, 1101–1115.
  • [24] Khodadadi, B., Faal A. Y., Shahvarughi A. (2019) Tilia platyphyllos extract assisted green synthesis of CuO/TiO2 nanocomposite: application as a reusable catalyst for the reduction of organic dyes in water. Karaj branch Journal of Applied Chemical Research, 13, 51–65.
  • [25] Oyerinde, A., Bello E. (2016) Use of Fourier transformation infrared (FTIR) spectroscopy for analysis of functional groups in peanut oil biodiesel and its blends. British Journal of Applied Science & Technology, 13, 1–14.
  • [26] Türköz Karakullukçu, N. (2025) The impact of Hypericum perforatum L. as an organic free-radical scavenger in biodiesel-diesel blends. Sakarya Üniversitesi Fen Bilimleri Dergisi Sakarya University Journal of Science, 29, 100–112.
  • [27] Uğuz, G., Çakmak A., Bento C. da S., Türköz Karakullukçu N. (2023) Experimental investigation of fuel properties and engine operation with natural and synthetic antioxidants added to biodiesel. Biofuels, 14, 405–420.
  • [28] Li, H., Niu S., Lu C., Wang Y. (2015) Comprehensive investigation of the thermal degradation characteristics of biodiesel and its feedstock oil through TGA-FTIR. Energy and Fuels, 29, 5145–5153.
  • [29] Bento, S. (2022) The effects of the addition of dill oil (Anethum graveolens) into biodiesel-diesel blends. -, 5, 203–212.
  • [30] Dunn, R. O. (1999) Thermal analysis of alternative diesel fuels from vegetable oils. JAOCS, Journal of the American Oil Chemists’ Society, 76, 109–115.
  • [31] Kırcı, D., Öztürk G., Demirci B. (2023) Volatile compositions of Tilia platyphyllos Scop. infusions by headspace-solid-phase microextraction (HS-SPME), antioxidant activity. European Journal of Life Sciences, 1, 107–111.
  • [32] Khadhri, A., Mendili M., Bannour-Scharinger M., Masson E., Pizzi A. (2024) Identification of secondary metabolites in Tunisian Tilia platyphyllos Scop. using MALDI-TOF and GC-MS. Journal of Renewable Materials, 12, 827–842.
  • [33] Bahadori, M. B., Sarikurkcu C., Kocak M. S., Calapoglu M., Uren M. C., Ceylan O. (2020) Plantago lanceolata as a source of health-beneficial phytochemicals: phenolics profile and antioxidant capacity. Food Bioscience, 34, 100536.
  • [34] Koç, S., Fakir H. (2019) Yaz ıhlamuru (Tilia platyphyllos Scop.)’nun bazı morfolojik özellikleri ile yaprak ve çiçek uçucu bileşenlerinin belirlenmesi. Bilge International Journal of Science and Technology Research, 3, 29–38.
  • [35] Buchbauer, G., Remberg B., Jirovetz L., Nikiforov A. (1995) Comparative headspace analysis of living and fresh cut lime tree flowers (Tiliae flores). Flavour and Fragrance Journal, 10, 221–224.
  • [36] Bano, I., Deora G. S. (2019) Preliminary phytochemical screening and GC-MS analysis of methanolic leaf extract of Abutilon pannosum (Forst. f.) Schlect. from Indian Thar Desert. Journal of Pharmacognosy and Phytochemistry, 8, 894–899.
  • [37] Pham, T. V., Ho D. V., Le A. T., Ngo Y. D., Dang N. T. T., Le T. Q., Nguyen B. C. (2023) Volatile organic compounds and antioxidant, cytotoxic activities of extracts from the leaves of Grewia bulot. Indonesian Journal of Chemistry, 23, 1394–1405.
  • [38] Banni, M., Jayaraj M. (2023) Identification of bioactive compounds of leaf extracts of Sida cordata (Burm.f.) Borss. Waalk. by GC/MS analysis. Applied Biochemistry and Biotechnology, 195, 556–572.
  • [39] Poli, S., Alognon A., Eloh K., Gbati L., Ataba E. (2024) GC-MS analysis and in vivo anti-inflammatory, analgesic activities of Phyllanthus niruri Linn and Sida acuta Burm, used to treat malaria in. -, 1162–1184.
  • [40] Poljšak, N., Glavač N. K. (2021) Tilia sp. seed oil—composition, antioxidant activity and potential use. Applied Sciences (Switzerland), 11.
  • [41] Talebi, M., Oskouie A . A., Mahboubi A., Khani M., Mojab F. (2024) Analysis of Eremostachys hyoscyamoides essential oil composition and assessing the antibacterial and antioxidant properties of the ethanol extract. Heliyon, 10, e38389.
  • [42] Symma, N., Bütergerds M., Sendker J., Petereit F., Hake A., Düfer M., Hensel A. (2021) Novel piperidine and 3,4-dihydro-2H-pyrrole alkaloids from Tilia platyphyllos and Tilia cordata flowers. Planta Medica, 87, 686–700.
  • [43] Kelmendi, N., Mustafa B., Zahiri F., Nebija D., Hajdari A. (2020) Essential oil composition of Tilia platyphyllos Scop. collected from different regions of Kosovo. Records of Natural Products, 14, 366–371.

Doğal Koruyucu Güç: Tilia platyphyllos ile Biyodizel Oksidasyonunun Önlenmesi

Yıl 2025, Cilt: 18 Sayı: 2, 372 - 390, 31.08.2025
https://doi.org/10.18185/erzifbed.1689819

Öz

Geleneksel enerji kaynakları, günümüz çevresel sürdürülebilirlik hedefleriyle uyumsuzdur; bu nedenle yenilenebilir ve çevre dostu alternatifler giderek daha fazla ilgi görmektedir. Biyodizel; düşük toksisitesi, biyolojik olarak kolayca parçalanabilirliği ve düşük emisyon seviyelerine rağmen, çoklu doymamış yağ asidi içeriği nedeniyle oksidatif bozulmaya karşı hassastır. Bu durum, yakıtın depolama ömrünü kısaltmakta ve motor performansını olumsuz etkilemektedir. Bu araştırmada, doğal bir fenolik bileşik olan Tilia platyphyllos ekstresi, biyodizel-dizel (yüzde 50 biyodizel + yüzde 50 dizel) karışımlarının oksidatif direncini artırmak amacıyla kullanılmıştır. Soxhlet yöntemiyle elde edilen ekstre, yakıta 3000 ppm oranında eklenmiş ve sentetik bir antioksidan olan TBHQ ile karşılaştırılmıştır. Antioksidan aktivite, FT-IR (Fourier Dönüşümlü Kızılötesi Spektroskopisi), TGA (Termogravimetrik Analiz) ve DSC (Diferansiyel Taramalı Kalorimetri) gibi termal ve kimyasal karakterizasyon yöntemleriyle değerlendirilmiştir. Ekstrenin serbest radikalleri uzaklaştırma kapasitesi DPPH• ve ABTS•⁺ analizleriyle test edilmiştir. Sonuçlar, Tilia platyphyllos'un biyodizel-dizel karışımının oksidatif bozulmasını önlemede güçlü bir antioksidan olduğunu göstermektedir. Tilia platyphyllos, biyoyakıt teknolojisinde faydalı bir doğal katkı maddesi olarak değerlendirilebilir.

Kaynakça

  • [1] Yaakob, Z., Narayanan B. N., Padikkaparambil S., K S. U. (2014) A review on the oxidation stability of biodiesel. Renewable and Sustainable Energy Reviews, 35, 136–153.
  • [2] Al-Samaraae, R. R., Atabani A. E., Uguz G., Kumar G., Arpa O., Ayanoglu A., Mohammed M. N., Farouk H. (2020) Perspective of safflower (Carthamus tinctorius) as a potential biodiesel feedstock in Turkey: characterization, engine performance and emissions analyses of butanol–biodiesel–diesel blends. Biofuels, 11, 715–731.
  • [3] Romola, C. V. J., Meganaharshini M., Rigby S. P., Moorthy I. G., Kumar R. S., Karthikumar S. (2021) A comprehensive review of the selection of natural and synthetic antioxidants to enhance the oxidative stability of biodiesel. Renewable and Sustainable Energy Reviews, 145, 111109.
  • [4] Godri, K. J., Chhan D., Rais K., Pan K., Wallace J. S. (2019) Biodiesel fuels: a greener diesel? A review from a health perspective. Science of the Total Environment, 688, 1036–1055.
  • [5] Kumar, N. (2017) Oxidative stability of biodiesel: causes, effects and prevention. Fuel, 190, 328–350.
  • [6] Gulcin, İ., Alwasel S. H. (2023) DPPH• radical scavenging assay. Processes, 11.
  • [7] Anwar, M. (2021) Biodiesel feedstocks selection strategies based on economic, technical, and sustainable aspects. Fuel, 283, 119204.
  • [8] Ren, J., Li Z., Li X., Yang L., Bu Z., Wu Y., Li Y., Zhang S., Meng X. (2025) Exploring the mechanisms of the antioxidants BHA, BHT, and TBHQ in hepatotoxicity, nephrotoxicity, and neurotoxicity from the perspective of network toxicology. Foods, 14.
  • [9] Zhou, Y., Ren Q., Shen Y. (2025) Comprehensive review of Tilia L.: phytochemical profiles, edible value, therapeutic potentials, and ecological significance. -, 6867.
  • [10] Phuekvilai, P., Wolff K. (2013) Characterization of microsatellite loci in Tilia platyphyllos (Malvaceae) and cross‐amplification in related species. Applications in Plant Sciences, 1, 4–6.
  • [11] Lykholat, Y., Alekseeva A., Khromykh N., Ivan’ko I., Kharytonov M., Kovalenko I. (2016) Assessment and prediction of viability and metabolic activity of Tilia platyphyllos in arid steppe climate of Ukraine. The Journal “Agriculture and Forestry”, 62, 57–64.
  • [12] Yuan, X., Wang H., Yan L., Huang X., Tang S. (2025) Comparison of key floral components between two Tilia species and among different processing technologies as revealed by widely targeted metabolomic profiling. Journal of the Science of Food and Agriculture.
  • [13] Abramovič, H., Grobin B., Ulrih N. P., Cigić B. (2018) Relevance and standardization of in vitro antioxidant assays: ABTS, DPPH, and Folin–Ciocalteu. Journal of Chemistry, 2018.
  • [14] Pieczykolan, A., Pietrzak W., Nowak R., Pielczyk J., Łamacz K. (2019) Optimization of extraction conditions for determination of tiliroside in Tilia L. flowers using an LC-ESI-MS/MS method. Journal of Analytical Methods in Chemistry, 2019.
  • [15] Selvi, K. Ç. (2020) Investigating the influence of infrared drying method on linden (Tilia platyphyllos Scop.) leaves: kinetics, color, projected area, modeling, total phenolic, and flavonoid content. Plants, 9, 1–17.
  • [16] Siger, A., Antkowiak W., Dwiecki K., Rokosik E., Rudzińska M. (2021) Nutlets of Tilia cordata Mill. and Tilia platyphyllos Scop. – source of bioactive compounds. Food Chemistry, 346, 60–63.
  • [17] Chinou, I. (2012) Assessment report on Tilia cordata Miller, Tilia platyphyllos Scop., Tilia x vulgaris Heyne or their mixtures, Flos. European Medicines Agency/Science Medicines Health, 44.
  • [18] Brand-Williams, W., Cuvelier M. E., Berset C. (1995) Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28, 25–30.
  • [19] Re, R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26, 1231–1237.
  • [20] Floegel, A., Kim D. O., Chung S. J., Koo S. I., Chun O. K. (2011) Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of Food Composition and Analysis, 24, 1043–1048.
  • [21] Piątkowski, M., Janus Ł., Radwan-Pragłowska J., Bogdał D., Matysek D. (2018) Biodegradable, pH-sensitive chitosan beads obtained under microwave radiation for advanced cell culture. Colloids and Surfaces B: Biointerfaces, 164, 324–331.
  • [22] Kędzierska, M., Bańkosz M., Sala K., Dudzik J., Potemski P., Tyliszczak B. (2023) Investigating the effect of the crosslinking factor on the properties of hydrogel materials containing Tilia platyphyllos hydrolate. Molecules, 28.
  • [23] Svec, L. (2015) Optimization of FTIR-ATR spectroscopy for botanical authentication of unifloral honey types and melissopalynological data prediction. -, 1101–1115.
  • [24] Khodadadi, B., Faal A. Y., Shahvarughi A. (2019) Tilia platyphyllos extract assisted green synthesis of CuO/TiO2 nanocomposite: application as a reusable catalyst for the reduction of organic dyes in water. Karaj branch Journal of Applied Chemical Research, 13, 51–65.
  • [25] Oyerinde, A., Bello E. (2016) Use of Fourier transformation infrared (FTIR) spectroscopy for analysis of functional groups in peanut oil biodiesel and its blends. British Journal of Applied Science & Technology, 13, 1–14.
  • [26] Türköz Karakullukçu, N. (2025) The impact of Hypericum perforatum L. as an organic free-radical scavenger in biodiesel-diesel blends. Sakarya Üniversitesi Fen Bilimleri Dergisi Sakarya University Journal of Science, 29, 100–112.
  • [27] Uğuz, G., Çakmak A., Bento C. da S., Türköz Karakullukçu N. (2023) Experimental investigation of fuel properties and engine operation with natural and synthetic antioxidants added to biodiesel. Biofuels, 14, 405–420.
  • [28] Li, H., Niu S., Lu C., Wang Y. (2015) Comprehensive investigation of the thermal degradation characteristics of biodiesel and its feedstock oil through TGA-FTIR. Energy and Fuels, 29, 5145–5153.
  • [29] Bento, S. (2022) The effects of the addition of dill oil (Anethum graveolens) into biodiesel-diesel blends. -, 5, 203–212.
  • [30] Dunn, R. O. (1999) Thermal analysis of alternative diesel fuels from vegetable oils. JAOCS, Journal of the American Oil Chemists’ Society, 76, 109–115.
  • [31] Kırcı, D., Öztürk G., Demirci B. (2023) Volatile compositions of Tilia platyphyllos Scop. infusions by headspace-solid-phase microextraction (HS-SPME), antioxidant activity. European Journal of Life Sciences, 1, 107–111.
  • [32] Khadhri, A., Mendili M., Bannour-Scharinger M., Masson E., Pizzi A. (2024) Identification of secondary metabolites in Tunisian Tilia platyphyllos Scop. using MALDI-TOF and GC-MS. Journal of Renewable Materials, 12, 827–842.
  • [33] Bahadori, M. B., Sarikurkcu C., Kocak M. S., Calapoglu M., Uren M. C., Ceylan O. (2020) Plantago lanceolata as a source of health-beneficial phytochemicals: phenolics profile and antioxidant capacity. Food Bioscience, 34, 100536.
  • [34] Koç, S., Fakir H. (2019) Yaz ıhlamuru (Tilia platyphyllos Scop.)’nun bazı morfolojik özellikleri ile yaprak ve çiçek uçucu bileşenlerinin belirlenmesi. Bilge International Journal of Science and Technology Research, 3, 29–38.
  • [35] Buchbauer, G., Remberg B., Jirovetz L., Nikiforov A. (1995) Comparative headspace analysis of living and fresh cut lime tree flowers (Tiliae flores). Flavour and Fragrance Journal, 10, 221–224.
  • [36] Bano, I., Deora G. S. (2019) Preliminary phytochemical screening and GC-MS analysis of methanolic leaf extract of Abutilon pannosum (Forst. f.) Schlect. from Indian Thar Desert. Journal of Pharmacognosy and Phytochemistry, 8, 894–899.
  • [37] Pham, T. V., Ho D. V., Le A. T., Ngo Y. D., Dang N. T. T., Le T. Q., Nguyen B. C. (2023) Volatile organic compounds and antioxidant, cytotoxic activities of extracts from the leaves of Grewia bulot. Indonesian Journal of Chemistry, 23, 1394–1405.
  • [38] Banni, M., Jayaraj M. (2023) Identification of bioactive compounds of leaf extracts of Sida cordata (Burm.f.) Borss. Waalk. by GC/MS analysis. Applied Biochemistry and Biotechnology, 195, 556–572.
  • [39] Poli, S., Alognon A., Eloh K., Gbati L., Ataba E. (2024) GC-MS analysis and in vivo anti-inflammatory, analgesic activities of Phyllanthus niruri Linn and Sida acuta Burm, used to treat malaria in. -, 1162–1184.
  • [40] Poljšak, N., Glavač N. K. (2021) Tilia sp. seed oil—composition, antioxidant activity and potential use. Applied Sciences (Switzerland), 11.
  • [41] Talebi, M., Oskouie A . A., Mahboubi A., Khani M., Mojab F. (2024) Analysis of Eremostachys hyoscyamoides essential oil composition and assessing the antibacterial and antioxidant properties of the ethanol extract. Heliyon, 10, e38389.
  • [42] Symma, N., Bütergerds M., Sendker J., Petereit F., Hake A., Düfer M., Hensel A. (2021) Novel piperidine and 3,4-dihydro-2H-pyrrole alkaloids from Tilia platyphyllos and Tilia cordata flowers. Planta Medica, 87, 686–700.
  • [43] Kelmendi, N., Mustafa B., Zahiri F., Nebija D., Hajdari A. (2020) Essential oil composition of Tilia platyphyllos Scop. collected from different regions of Kosovo. Records of Natural Products, 14, 366–371.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fiziksel Kimya (Diğer), Malzemelerin Yapısı ve Dinamikleri
Bölüm Makaleler
Yazarlar

Nalan Türköz Karakullukçu 0000-0001-7774-4970

Erken Görünüm Tarihi 14 Ağustos 2025
Yayımlanma Tarihi 31 Ağustos 2025
Gönderilme Tarihi 2 Mayıs 2025
Kabul Tarihi 16 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 2

Kaynak Göster

APA Türköz Karakullukçu, N. (2025). Natural Protective Power: Prevention of Biodiesel Oxidation with Tilia platyphyllos. Erzincan University Journal of Science and Technology, 18(2), 372-390. https://doi.org/10.18185/erzifbed.1689819