Araştırma Makalesi
BibTex RIS Kaynak Göster

On a Conjecture about Profiles of Finite Connected Racks

Yıl 2025, Cilt: 18 Sayı: 3, 735 - 744

Öz

A rack is a set with a binary operation such that left multiplications are automorphisms of the set and a quandle is a rack satisfying a certain condition. For a finite connected rack the cycle type of the permutation defined by left multiplication by an element is independent from the chosen element. This cycle type is called the profile of the rack. Hayashi conjectured, in the
profile of a finite connected quandle, the length of a cycle must divide the length of the largest cycle. In this paper, we prove Hayashi’s Conjecture in some particular cases.

Proje Numarası

TÜBİTAK 3501 Career Development Program No: 122F490

Kaynakça

  • [1] Joyce, D. (1982) A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23, no. 1, 37–65.
  • [2] Matveev, S. V. (1982) Distributive groupoids in knot theory, Mat. Sb. (N.S.), 119(161):1(9), 78–88; Sb. Math., 47:1 (1984), 73–83.
  • [3] Fenn, R., Rourke, C., (1992) Racks and links in codimension two, J. Knot Theory Ramifications 1, no. 4, 343–406.
  • [4] Hayashi, C., (2013) Canonical forms for operation tables of finite connected quandles, Comm. Algebra 41 3340–3349.
  • [5] Vendramin, L., (2012) On the classification of quandles of low order, J. Knot Theory Ramifications 21, no. 9, 1250088.
  • [6] Vendramin, L., Rig, a GAP package for racks, quandles and Nichols algebras. Available at http://github.com/vendramin/rig/ [7] Kajiwara, T., Nakayama, C., (2016) A large orbit in a finite affine quandle, Yokohama Math. J. 62 25–29. [8] Andruskiewitsch, N., Graña, M., (2003) From racks to pointed Hopf algebras, Adv. Math. 178, no. 2, 177–243.

Sonlu Bağlantılı Rakların Profilleri Hakkında Bir Sanı Üzerine

Yıl 2025, Cilt: 18 Sayı: 3, 735 - 744

Öz

Bir rak bir küme ve üzerinde tanımlanmış ikili işlemden oluşup sol çarpımlar kümenin otomorfizmalarıdır. Bir kuandle ise ikili işlemin belli bir koşulu sağladığı rak olarak tanımlanır. Sonlu bağlantılı bir rak için bir eleman ile sol çarpımın belirlediği permütasyonun döngü tipi seçilen elemandan bağımsızdır. Bu döngü tipine rakın profili denilir. Hayashi sonlu bağlantılı bir
kuandlenin profilinde bir döngünün uzunluğunun en uzun döngünün uzunluğunu böldüğünü öne sürmüştür. Bu makalede Hayashi’nin sanısını bazı belli durumlar için ispatlıyoruz.

Proje Numarası

TÜBİTAK 3501 Career Development Program No: 122F490

Kaynakça

  • [1] Joyce, D. (1982) A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23, no. 1, 37–65.
  • [2] Matveev, S. V. (1982) Distributive groupoids in knot theory, Mat. Sb. (N.S.), 119(161):1(9), 78–88; Sb. Math., 47:1 (1984), 73–83.
  • [3] Fenn, R., Rourke, C., (1992) Racks and links in codimension two, J. Knot Theory Ramifications 1, no. 4, 343–406.
  • [4] Hayashi, C., (2013) Canonical forms for operation tables of finite connected quandles, Comm. Algebra 41 3340–3349.
  • [5] Vendramin, L., (2012) On the classification of quandles of low order, J. Knot Theory Ramifications 21, no. 9, 1250088.
  • [6] Vendramin, L., Rig, a GAP package for racks, quandles and Nichols algebras. Available at http://github.com/vendramin/rig/ [7] Kajiwara, T., Nakayama, C., (2016) A large orbit in a finite affine quandle, Yokohama Math. J. 62 25–29. [8] Andruskiewitsch, N., Graña, M., (2003) From racks to pointed Hopf algebras, Adv. Math. 178, no. 2, 177–243.
Toplam 6 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uygulamalı Matematik (Diğer)
Bölüm Makaleler
Yazarlar

Selçuk Kayacan 0000-0001-9893-8176

Proje Numarası TÜBİTAK 3501 Career Development Program No: 122F490
Erken Görünüm Tarihi 30 Ekim 2025
Yayımlanma Tarihi 10 Kasım 2025
Gönderilme Tarihi 26 Kasım 2024
Kabul Tarihi 29 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 3

Kaynak Göster

APA Kayacan, S. (2025). On a Conjecture about Profiles of Finite Connected Racks. Erzincan University Journal of Science and Technology, 18(3), 735-744.