En küçük Kartezyen grubunun elemanlarıyla koordinatlanan 25. mertebeden bir projektif düzlem π olsun. Bu çalışmada, düzgün dörtgenin seçimine bağlı olarak bazı durumlarda π nin 3. mertebeden herhangi bir projektif alt düzlemi olmadığı gösterilmektedir.
[1] Akça Z. The construction of the cartesian group plane of order 25. MSc, University of Anadolu, Eskişehir, Turkey, 1991.
[2] Akça Z, Günaltılı İ. On the (k,3)-arcs of CPG(2,25,5). Anadolu University Journal of Science and–B Theoretical Sciences, 2012; 2 - 1 : 21-27.
[3] Bayar A, Akça Z, Ekmekçi S. On Embedding the Projective Plane PG(2,4) to the Projective Space P(4,4). New Trends in Mathematical Sciences, 2022: 10- 4: 142–150.
[4] Ekmekçi S, Bayar A, Akça Z. On The Projective Planes in Projective Space PG(4,4). Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 2022: 38- 3: 519–524.
[5] Ekmekçi S, Bayar A, Altintaş Kahriman E, Akça Z. On the Complete (k,2)- arcs of the Hall plane of order 9. International Journal of Advanced Research in Computer Science and Software Engineering, 2016; 6-10: 282–288.
[6] Panella, G. Una Classe Di Sistemi Cartesiani. Atti Della Accademia Nazionale Lincei Rendiconti, 1965; 38; 480-485.
SOME RESULTS ON THE SMALLEST CARTESIAN GROUP PLANE
Let π be the projective plane of order 25 coordinatised by elements of the smallest cartesian group. In this work, in some cases depending on the choice of the regular quadrangle it is shown that there is no any projective subplane of order 3 of π.
[1] Akça Z. The construction of the cartesian group plane of order 25. MSc, University of Anadolu, Eskişehir, Turkey, 1991.
[2] Akça Z, Günaltılı İ. On the (k,3)-arcs of CPG(2,25,5). Anadolu University Journal of Science and–B Theoretical Sciences, 2012; 2 - 1 : 21-27.
[3] Bayar A, Akça Z, Ekmekçi S. On Embedding the Projective Plane PG(2,4) to the Projective Space P(4,4). New Trends in Mathematical Sciences, 2022: 10- 4: 142–150.
[4] Ekmekçi S, Bayar A, Akça Z. On The Projective Planes in Projective Space PG(4,4). Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 2022: 38- 3: 519–524.
[5] Ekmekçi S, Bayar A, Altintaş Kahriman E, Akça Z. On the Complete (k,2)- arcs of the Hall plane of order 9. International Journal of Advanced Research in Computer Science and Software Engineering, 2016; 6-10: 282–288.
[6] Panella, G. Una Classe Di Sistemi Cartesiani. Atti Della Accademia Nazionale Lincei Rendiconti, 1965; 38; 480-485.
Akça, Z. (2023). SOME RESULTS ON THE SMALLEST CARTESIAN GROUP PLANE. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 11(2), 143-147. https://doi.org/10.20290/estubtdb.1302633
AMA
Akça Z. SOME RESULTS ON THE SMALLEST CARTESIAN GROUP PLANE. Estuscience - Theory. Ağustos 2023;11(2):143-147. doi:10.20290/estubtdb.1302633
Chicago
Akça, Ziya. “SOME RESULTS ON THE SMALLEST CARTESIAN GROUP PLANE”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 11, sy. 2 (Ağustos 2023): 143-47. https://doi.org/10.20290/estubtdb.1302633.
EndNote
Akça Z (01 Ağustos 2023) SOME RESULTS ON THE SMALLEST CARTESIAN GROUP PLANE. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 11 2 143–147.
IEEE
Z. Akça, “SOME RESULTS ON THE SMALLEST CARTESIAN GROUP PLANE”, Estuscience - Theory, c. 11, sy. 2, ss. 143–147, 2023, doi: 10.20290/estubtdb.1302633.
ISNAD
Akça, Ziya. “SOME RESULTS ON THE SMALLEST CARTESIAN GROUP PLANE”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 11/2 (Ağustos 2023), 143-147. https://doi.org/10.20290/estubtdb.1302633.
JAMA
Akça Z. SOME RESULTS ON THE SMALLEST CARTESIAN GROUP PLANE. Estuscience - Theory. 2023;11:143–147.
MLA
Akça, Ziya. “SOME RESULTS ON THE SMALLEST CARTESIAN GROUP PLANE”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, c. 11, sy. 2, 2023, ss. 143-7, doi:10.20290/estubtdb.1302633.
Vancouver
Akça Z. SOME RESULTS ON THE SMALLEST CARTESIAN GROUP PLANE. Estuscience - Theory. 2023;11(2):143-7.